LBL-11847 » -

TR-804
NATIONAL
-V RESOURCE
FOR COMPUTATION
N CHEMISTRY
TWO-WEEK LOAN COPY
This is a Library Circulating Copy iR am
which may be borrowed for two weeks, . e
For a personal retention copy, call
Tech. Info. Division, Ext. 6782.
/

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 and for the -
* National Science Foundation under Interagency Agreement CHE-7721305

”D L’ ‘-f{;) ?g H — »g{;j? ,}

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, cxpress or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefuiness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

. TR-804 October 1980

RATMAC Primer
by

R. J. Munn

J. M. Stewart

A. P. Norden

M. Katherine Pagoaga

Division of Agricultural and Life Sciences
University of Maryland
College Park, Maryland 20742

National Resource for Computation in Chemistry
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Col

General permission
part of this manual
notice is given
publication, and to

Copyright 1979
University of Maryland
Computer Science Center
lege Park, Maryland 20742

to republish, but not for profit, all or
is granted provided that the copyright
and that reference is made to this
the fact that reprinting privileges are

granted by permission of the University of Maryland.

Acknowledgements

Partial support for this manual was provided by the
National Science Foundation under Grant CHE-7721305.

Additional support for the project was provided by the
NRCC through the Basic Energy Sciences Division of the U.S,
Department of Energy under Contract W-7405-FENG -48.

The computer time for this project was supported
through the facilities of the Computer Science Center of the
University of Maryland,

This document has been prepared using TEXT, a machine
independent document processing system, which is written in
RATMAC. TEXT is available from the Computer Science Center,
University of Maryland, College Park. The features of TEXT
are described in CN-26 which is available from the Program
Library at the Computer Science Center,

Printing History

FPirst edition, August 1979

Second edition, October 1980

ii1

Disclaimer

The RATMAC preprocessor 1s based on two programs,
RATFOR and MACRO, described in the book Software Tools by
B. W. Kernighan and P. J. Plauger (Addison-Wesley Publishing
Company) . The user of RATMAC is urged to purchase and read
this excellent text. 1In addition to describing the syntax
of both RATFOR and MACRO, the book contains many excellent
software weapons that should be in any programmer”s armory.

RATMAC is a combination of RATFOR and MACRO. Although
RATMAC has been exhaustively tested as a unit, no warranty,
expressed or implied, is made by the current authors as to
the accuracy and functioning of RATMAC, its subprograms,
related program material, or operating instructions,

No responsibility i1is assumed by the authors in
connection with the use, attempted use, or application of
these programs.

It would be appreciated if acknowledgement of the use
of RATMAC be made 1in published work. The main reference
should be to Kernighan and Plauger with a minor
acknowledgement to the current authors.

iv

TABLE OF CONTENTS

Introduction . ¢ o o o o o o o ¢ o s o o o o o o o o o
A brief summary of the concept of structured
programming and preprocessors is given. RATFOR
and RATMAC structured languages are described.

Control Structures . . o o o o o o o o o o o s o o o o
Tllustrations of statement blocks, {}; looping
constructs, DO, FOR, WHILE, REPEAT; and loop
modifying structures, NEXT, BREAK are shown.

Decision Control Structures e o 5 o o o o b o s o o 8

The decision control structures IF...ELSE
IF...RLSE are elaborated,

Miscellaneous FeatiUre8 ., o o o o o o o o o o o o o o o

Additional features of RATMAC including the
character set, program format, cross-referencing,

RATMAC generated FORTRAN code, reserved
characters, .digraphs, and quoted strings are
defined.

File Inclusi@n =] -3 e o (=] @ =) -3 ® -3 £-3 =3 2 o e £ 8 e =] &
The INCLUDE command is introduced.
Symb@lic C@nStantS ® 2 e e ? i1 a8 a =] 12 e =3 £ (=] £- -3 (=3 8

The DEFINE and MACRO: features of the preprocessor
are illustrated,

Ma@r@g 2 =] a =] =3 -2 e L] e e =3 @ -] 9 =2 @ e =3 2 ® e 9 & e
The MACRO: feature and its merits are set forth.

Builtmin ﬁacf@s 2 a L] @ - @ e 8 @ - =4 e ® e & L4 = @ o
A description of each of the RATMAC built-in
macros; MACRO:, XMACRO:, SAVE:, INCR:, ARITH:,
LENSTR:, SUBSTR:, IFELSE:, CHR:, ORD:, FLAGON:,
and FLAGOFF: is provided,

An Alternative INCLUDE Mechanism . . o ¢ o o o o o o o

An alternate method for accomplishing the INCLUDE
feature is suggested.

16

20

30

31

34

36

42

Macros Within Macros . . « o o o o s o o 6 s 5 o5 o o =

Recursive and non-recursive macros are
illustrated,

Some Examples of Macros e o o o o 5 o s e o o 6 o o o

Additional useful macros and their functions are
introduced.

Two Complete Examples e o o o o o o o 5 s 8 o o e o e
The RATMAC code, the generated FORTRAN, and the
program execution results for each of two RATMAC
programs are displayed.

RATMAC Error Messages 6o o ® 8 o o s 8 o 8 o s o o 8 o

The RATMAC error messages are elaborated.

EEDEX e e @ e ° @ ® e e e e ® & s e e ® 8 L @ e @ ® &

vi

43

47

57

83

85

RATMAC Primer

“Introduction

FORTRAN is one of the oldest and most widely available
high level programming languages. Its popularity as a
scientific programming language has meant that its structure
has been rather static with dramatic changes occurring only
after considerable discussion and thought.

On the other hand, software development, in general,
has proceeded vrapidly in the last decade and FORTRAN has
tended to look increasingly "old fashioned"”. 1In particular,
it lacks many of the control structures associated with
structured programming. A number of attempts have been made
to augment the ANSI standard FORTRAN with appropriate
control and other "structures, The resulting FORTRAN
dialects are often called structured or rational FORTRAN,

Structured programming is a style of programming that
has become increasingly popular in the last decade, The
seminal letter entitled "GO TO statement considered harmful”
CACM 11,3 (March 1968) ©p. 147 by E. W. Dijkstra 1is
considered by many to have been the catalyst of this
popularity. By December 1974 ACM Computing Surveys printed
a review issue on this subject.

In a narrow sense, structured programming is
programming with a limited well-defined set of flow control
constructs. FRach construct has a single entrance and a
single exit. This latter statement means that the GO TO
statement, so beloved of FORTRAN devotees, is not among the
constructs available to the programmer. This has led to the
somewhat simplistic definition of structured programming as
"GO TO-less programming®.,

In a broader sense, structured programming 1is a

discipline, It encourages the programmer to design in a
top-down sense with care being taken to modularize and
isolate functions. In addition, it promotes well-defined

data structures with carefully thought out interfaces
between functions.

The net result in all cases is code that is easy to
write initially, easy to modify subsequently, and easier for
someone unfamiliar with the details of the code to
understand, It 1is hard to give a non-trivial example that
illustrates all of these characteristics.

Page 1

Introduction

The program below, which will be developed later in
complete detail, is meant to simulate a basic calculator
that has a stack and operates with reverse Polish notation.
When presented with a string of operands (real numbers) and
(binary) operators, the program evaluates the expression,
For example, the string:

3.0 (enter) 2.0 + 10. / =

would produce the result 0.5, i.e. ((3+2)/10=0.5).

The "program"” is:

get first term in expression # initializge
WHILE (not the end of expression) # start WHILE loop
IF (term is an operand) # operand?
push the operand on the stack
ELSE IF (term is an operator) # operator?
IF {(too few values on stack) $ error
output message ("Poorly formed expression”)
ELSE # OK evaluate
pop operands from stack
perform operation
$ush result onto the stack
ELSE
output message $ error

("Illegal item in expression”)
?et next term in expression

STOP

The structured programming constructs in the above
program are the "WHILE" loop, the "IF,..ELSE IF,..ELSE"
decision structures, and the statement Dblock definition
braces, {...}.

The single entrance-single exit concept of structured
programming is illustrated by the "WHILE" loop. It is
entered at a single point; its associated statement block is
executed repeatedly so long as the entrance condition
remains true, It is exited from a single point when the
entrance condition becomes false.

Page 2

RATMAC Primer

In a similar fashion, the IF...ELSE IF...BLSE chain 1is
entered at the top and control passes down the chain until a
true condition is found. The associated statement block is
then executed, If no true condition 1is found, then the
statement block associated with the trailing ELSE is
executed.

In both constructs, the program flow is “"obvious" and
well-defined.

The above ‘"program" illustrates the top-down design
concept., The problems of how the expression 1s accessed,
how the stack 1is constructed, and what an output message
does have been pushed down to a lower design level. Thege
are details which are not important at the top level; they
clutter the design. Of course, they will have to be dealt
with eventually. At that point, however, further details of
the program may be pushed down to an even lower level, 1In
this way a set of "primitive” functions can often be
established that can be used over and over in a variety of
programming situations.

Structured FORTRAN dialects, while powerful, have a
serious drawback in that they are not transportable directly
from machine to machine. To overcome this difficulty, the
designer of such a dialect has to supply a processor that
will translate the dialect into standard ANSI FORTRAN. 1In
the interests of inter-machine portability, such a processor
is written in ANSI FORTRAN. A bootstrap process can then be
used to install the processor on any machine with an ANSI
FORTRAN compiler,

The use of a structured FORTRAN language obviously
involves at least one additional step in the “compilation"”
process, The structured language has to be translated into
ANSI FORTRAN before it can be compiled into machine code,

kb hkhhkdihhk hhhkhhhdhhkhik
& ¥* * ®
* RATMAC * RATMAC * ANSI *
* SOURCE # —-e——emcm——ee— >* FORTRAN *
* CODE * preprocessor ¥ *
% % * *®
Ehhkhhkdhhkdhhx Ahkhkhhhhhkihk

This extra step is easily justified. The quality of the
code that is written in a structured FORTRAN will, in
general, be demonstrably superior to the equivalent code
written in standard FORTRAN. By superior, it is meant that
the code is easier to write initially, easier to debug,

Page 3

Introduction

easier to maintain and document, and is of comparable
efficiency. 1In addition, once a structured FORTRAN language
is adopted, the user is not 1limited to Jjust adding new
control structures, Features such as macros and £file
inclusion can also be added.

One of the most successful structured FORTRAN languages
is RATFOR, rational FORTRAN, produced by Brian W. Kernighan
and P, J. Plauger. This success can be traced to a number
of factors. First, it is a well-defined language which is
easy to learn. Second, it has a bootstrap which is easy to
implement on any machine with a PORTRAN compiler. Third, it
has associated with it the excellent text, Software Tools,
by Kernighan and Plauger, which contains an invaluable
collection of well-documented programs written in RATFOR,

The language RATMAC is a direct descendant of RATFOR,
RATMAC has all of the characteristics of RATFOR, but is
augmented by a powerful recursive macro processor which is
extremely useful in generating transportable FORTRAN
programs. A macro is a collection of programming steps
which are associated with a keyword. This keyword uniquely
identifies the macro, and whenever it appears in a RATMAC
program it is replaced by the collection of steps. This can
be a powerful programming tool as will be shown below.

For example, the macro definition:
MACRO:(LOGTST:FASC&XIN<2$1]ZASC&XIN>:$1)
can be used in the following fashion:
IF(LOGTST: (XTAB(7)))

The string LOGTST: is recognized as a macro name, and
XTAB(7) is recognized as a macro argument. The net result
is LOGTST: is replaced by its definition and $1 is replaced
by the first (and only) argument,

The result is equivalent to coding:

IF (ASC&XIN<=XTAB (7) | |ASC&XIN>=XTAB (7))

Page 4

RATMAC Primer

or the more standard:

IF(ASC.AND . XIN.LE . XTAB(7) .OR,
LNOT ASC AND XIN . GE. XTAB(7))

It is convenient to consider the RATFOR features of
RATMAC separately from the macro features. In fact, one set
of features can be used without making use of the other
set. In what follows, the enhanced control structures will
be dealt with before the macro facilities are considered.

In this primer it is assumed that the reader has made
use of a conventional ANSI FORTRAN compiler and is familiar
with the syntax of FORTRAN.

Page 5

Control Structures

Statement Blocks

One characteristic of structured languages is that they
contain few statement labels and fewer GO TO”s. The absence
of such features to group executable statements means that
an alternative mechanism must be found. In RATMAC this is
accomplished with the use of statement brackets. All
statements within a pair of statement brackets are regarded
as a single unit. In RATMAC, the statement brackets are
left and right braces | }. Unfortunately, not all
character sets contain such characters. In such an event,
two digraph equivalents $(and $) are used in place of the
braces. The following piece of RATMAC code contains two
explicit statement groups:

X=ANS
ANS=0.0 4 zero answer

X=-17.5%X; AND=-2.0

I=1I+1 4 increment counter

The code also contains an implied statement block I=I+1. An
implied statement block is defined as a single statement not
within statement brackets.

In general, angular brackets, < and > will be used to
denote syntactic wunits within RATMAC. 1In this primer, the
construct <statement block> will denote a general statement
block.

The above RATMAC code looks much like standard FORTRAN
code with minor embellishments, However, some cosmetic
features should be mentioned immediately.

1. RATMAC 1is free form; statements may appear anywhere
on an input line.

2. Any line may contain a comment, Any characters
following a hash mark, #, are ignored.

3. Multiple statements may apear on a line; a semicolon
is used to separate them,

Page 6

RATMAC Primer

Looping Constructs

RATMAC contains four looping constructs; they are the
DO, FOR, WHILE, and REPEAT loops,

DO Loop

The DO loop in RATMAC is very similar to the familiar
DO loop of standard FORTRAN, TIts syntax is:

DO <loop control>
<statement block>

For example, a piece of RATMAC code to sum N numbers stored
in array A would be:

SUM=0.0 # initialize sum
DO J=1,N
SUM=SUM+A (J) # accumulate sum

This code is very reminiscent of the corresponding FORTRAN
code, only the DO statement label is missing., The range of
the loop is the statement block; in this case, the single
statement SUM=SUM+A(J).

Consider now the slightly more complex code for
accumulating the sums necessary to do a least squares
analysis on two vectors, X and ¥, of length N, The RATMAC
code would be:

SUMX=0.0; SUMY=0.0; SUMXY=0.0
SUMX2=0.0; SUMY2=0.0
DO K=1,N

SUMX=SUMX+X (K) ; SUMY=SUMY+Y (K)

SUMX 2=SUMX 2+X (K) *X (K) ; SUMY2=SUMY2+¥ (K) *¥ (K)
SUMXY=SUMKY+X (K) *¥ (K)

J

Here the DO statement block encompasses the five statements
delimited by statement brackets.

Page 7

Control Structures

The RATMAC DO has all of the properties (and
deficiencies) of the FORTRAN DO, It will be as general or
as limited as the DO allowed by a given FORTRAN compiler.,
For example, to sum backwards we could write the following
code if a negative DO increment is allowed by the compiler:

SUM=0.0
DO J=N,1,-1
SUM=SUM+A (J)

If a negative increment is not allowed, RATMAC will process
the statement as written but a FORTRAN failure will result,

A very important syntactic restriction concerning
RATMAC follows: FORTRAN does not consider the blank
character significant. Thus:

D 0 J=1,N

is equivalent to

DOJ=1,N
RATMAC is not so permissive., A keyword such as DO must not
contain imbedded blanks and it must end in a non-alphabetic
character; such as a blank. Thus:

DO J = 1 , N

is allowed while

DOJ=1,N

is not allowed.

Note: The positioning of the statement brackets, [},
following a DO loop structure is restricted. The opening
statement bracket may not appear on the same line as the DO
command , This restriction is necessary since there is no
general way of detecting the end of the <loop control>
unit,

Page 8

RATMAC Primer

FOR Loop

The FOR loop of RATMAC is a powerful looping construct
with none of the limitations associated with the familiar DO
loop. The syntax of the FOR loop is:

FOR(<initialization>;<condition>;<reinitialization>)
<statement block>

A simple example that simulates the standard DO statements
first shown above, would be:

SUM=0.0
FOR{I=1; I<=N; I=1+1)
SUM=8UM+A (1)

The loop initialization statement 1is 1I=1; the condition
under which the 1loop 1is executed is I<=N; and the
reinitialization that is made at the end of each loop is
I=I+1,

While this example apparently simulates the equivalent
DO loop, it does not in one extremely important case;
namely, that when N is zero or negative. 1In such a case the
DO loop is always executed once, whereas the FOR 1is not
executed at all. In addition, on exiting such a "counting”
FOR loop, the index I is well-defined,.

If the FOR loop were limited to such "counting” loops
it would not represent a significant improvement over the DO
loop. The power of the FOR loop lies in the fact that the
three components: <initialization>, <condition>, and
<reinitialization> can Dbe anything that the user chooses.
For instance:

J=NSTART
FOR(A=~-3.5: A<=27.,2: A=A+0.1)

B(J)=A*C(J)
J=J+1

As another example, consider the problem of finding the
position of the first and the last non-blank characters in a
line of 80 Al characters. The following RATMAC, wused in
conjunction with a PORTRAN 66 compiler, does the trick:

Page 9

Control Structures

INTEGER BLANK,LINE(80) ,BEGIN,END
DATA BLANK/” “/ # blank Al character
FOR(BEGIN=1: BEGIN<=80 & LINE(BEGIN)==BLANK;
BEGIN=BEGIN+1)
H # empty statement

FOR (END=BEGIN; END<=80 & LINE(END) !=BLANK;
END=END+1)

14
END=END~-1 # point END to non-blank

A number of points are worthy of note., First, the FOR
statement is not complete on a single line., RATMAC detects
this (it is looking for a balancing right parenthesis) and
takes appropriate action. Second, the condition has become
a complicated logical statement; one part to stop at the end
of the 1line and the other to stop on an appropriate
character. Third, the statement within the statement block
is empty (signified by the semicolon). Fourth, the logical
operator has been replaced by the following more evocative
representations:

is .AND,
is .EQ.
is .GE.
is .GT,
is .LE.
is LT.
is .NE.
is .NOT.

]

o A v
= I ANV I il &

Other representations of the remaining logical operators
will appear shortly. It is not, however, mandatory that
these symbols be used instead of the dotted logical
operators of FORTRAN,

The reader should study the above example carefully.
Note that the boundary cases are taken care of quite
naturally; they are the all blank card, BEGIN=81 and END=80
and the card with no blank characters, BEGIN=1 and END=80.

The code, however, does have a flaw. It will fail if
the text on the card contains imbedded blanks. The
following code corrects the flaw, 1is simpler, and will
execute more guickly: '

Page 10

RATMAC Primer

FOR (BEGIN=1; BEGIN<=80 & LINE (BEGIN)==BLANK;
BEGIN=BEGIN+1)
;
FOR (END=80; END>0 & ILINE (END)==BLANK;
END=END-1)

#

While this code works correctly, it still contains a flaw
which makes the code non-standard. Can you spot the flaw?
Does BEGIN reaching 81 and END reaching 0 cause any problem?
What would LINE contain 1if BEGIN=81 and END=0 after
execution?

The problem lies in the logical condition in the FOR
loop. ANSI FORTRAN does not specify the order of evaluation
of such an expression. Thus, when BEGIN reaches 81 the test
LINE (81)==BLANK may be performed before the test BEGIN<=80.
Since LINE(81) 1is not defined, this may lead to program
failures on some machines.

Consider now a more realistic problem., LINE(l) through
LINE(80) contains a set of Al characters and we wish to know
how many "words®" the card contains and where each "word”
begins and ends. A "word” 1is a sequence of non-blank
characters,

INTEGER BLANK,BEGIN(40) ,END(40) ,LINE(80)

INTEGER I1I,J

DATA BLANK/” °/

BEGIN (1) =1 # initialize first value
FOR(I=1; BEGIN(I)<=80; I=I+1) # count words

FOR(J=BEGIN(I); J<=80 & LINE(J)==BLANK;J=J+1)
H # null

BEGIN(I)=J # save start of word

FPOR(;J<=80 & LINE(J} =BLANK:J=J+1)

END (I)=J-1
BEGIN (I+1) =J+1

save end of word
initialize next cycle
since LINE(J) is blank
we can skip it

end of I loop

get correct count

e e s e e o

Page 11

Control Structures

WHILE Loop

The WHILE loop is related to the FOR loop and each can
be defined in terms of the other. The syntax of the WHILE
loop is:

WHILE (<condition>)
<gtatement block>

<statement block> is executed repeatedly while <condition>
is true. It is entirely egquivalent to the FOR statement:

FOR{ ;<condition>;)
<gtatement block>

Consider the following problem - a file, NFILE, contains an
unknown number of card images followed by an end-of-file,
We want to count and print the images. The following code
using the WHILE construct and designed for FORTRAN 77 will
perform the task:

CHARACTER LINE (80)

INTEGER KNT,NFILE,I,NOUT

LOGICAL EOF

DATA KNT/0/,EOF/.FALSE./ # initialize

DATA NFILE/10/,NOUT/6/ # sample values
WHILE (| EOF) # do until EOF flips

READ (NFILE,1,END=99) (LINE(I),I=1,80) # read line
1 FORMAT (80A1)

WRITE (NOUT, 2) (LINE(I),I=1,80) 4 NOUT is printer
2 FORMAT (1X,80A1)

KNT=KNT+1 # count line

GO TO 98 # skip over EOF code

99 EOF=!EOF 4 £lip EOF

WRITE (NOUT,3) NFILE,KNT # write sign off

3 FORMAT(0 FILE”,I2, CONTAINS”,I15, LINES”)
98 - CONTINUE
end WHILE loop
STOP
END

Some notes: The character ! is the rational representation
of the logical operator .NOT.. Statement labels are allowed
in RATMAC but are rarely required; FORMAT and the
end-of-file statement are notable exceptions. The numbers
on a FORMAT or labelled statement may appear anywhere on a
line, The label must be terminated by a non-alphanumeric
character such as a blank.

Page 12

RATMAC Primer

REPEAT Loop

The final loop construct in RATMAC is the REPEAT loop
which has two variants. The syntax for each is as follows:

REPEAT
<statement block>
and
REPEAT
<gtatement block>
UNTIL (<condition>)

The former is an "infinite" loop. <statement block> will be
executed indefinitely (in practice such an infinite loop
will be broken in gsome manner to be sghown later). The
latter 1loop is a conditional 1loop. It differs from the
WHILE loop in that the exiting condition test is made at the
end of the loop. The body of a REPEAT loop 1is always
executed at least once.

The previous example can be rewritten using the REPEAT
statement.

First, with the "infinite" REPEAT (we do not repeat the
initialization code or format statements):
REPEAT # do forever!

READ (NFILE,1,END=99) (LINE(I) ,I=1,80)
WRITE (NOUT, 2) (LINE(I) ,I=1,80)

KNT=KNT+1

GO TO 98

99 WRITE (NOUT,3) NFILE,KNT
sTOoP # stop infinite loop

98 CONTINUE

end REPEAT loop
END

Page 13

Control Structures

Using the REPEAT...UNTIL code, the program becomes:

REPEAT

READ (NFILE,1,END=99) (LINE(I),I=1,80)

WRITE (NOUT, 2) (LINE(I) ,I=1,80)

KNT=KNT+1

GO TO 98

99 WRITE(NOUT,3) NFILE,KNT
EOF=!EOF # £lag end-of-file

98 CONTINUE

UNTIL (EOF)
STOP
END

Modifying Loop Structures

One of the powerful features of top-down structured
programming is that control structures have a single
entrance and a single exit. This feature makes it extremely
easy to follow the flow of control in a program,
Occasionally, however, it 1is convenient to modify a loop
structure either by exiting the loop other than by the usual
<condition> test or by terminating a particular loop
iteration prematurely.

RATMAC provides two commands to do this; they are BREAK
and NEXT, respectively, These commands do violence to the
basic principles of structured code and should be used
sparingly if at all,

BREAK

The BREAK statement causes an immediate exit from a
loop. The loop may be a PFOR, DO, REPEAT, or WHILE
structure, The BREAK exits from a single loop structure; to
exit from a series of nested loops, a series of BREAK g, one
within the scope of each loop, is required.

Page 14

RATMAC Primer

NEXT

The NEXT statement causes the current cycle of a loop
structure to be terminated and the next one to be
initiated, Simplistically, it «can be regarded as an
immediate transfer to the end of the loop enclosing the
command .

Examples of the use of the BREAK and NEXT commands will
be deferred until the decision control structures have been
introduced.

Page 15

Decision Control Structures

The basic structure that controls the flow of a RATMAC
program is the construct:

IF (<condition>)
<true block>
ELSE
<false block>

<condition> is a logical condition that can assume the
values to be true or false, The statement block <true
block> is executed if the condition is true, otherwise the
statement block <false block> is executed, Many varients of
the basic control structure are available., If there 1is no
“false” branch to be executed, then the ELSE may be omitted:

IF (<condition>)
<true block>

The statement blocks may themselves contain subordinate
control structures, The following construct 1is a common
one:

IF (<conditionl>)
<blockl>

ELSE IF (<condition2>)
<block2>

ELSE IF (<condition3>)
<block3>

e

L

ELSE
<block>

This basic construct can be regarded as a linear multi-way
branch, ‘

Example: Assume once again that if given a 1line of
alphabetic character the number of letters and digits, the
number of blanks, and the number of other characters is to
be counted., Since it is not desired to be constrained to a
particular character code, the existence of an integer
function, ICHAR, will be assumed. This function returns a
unigque integer corresponding to an Al character, The
program to do this task in FORTRAN 66 would be:

Page 16

RATMAC Primer

#
define storage
#
INTEGER LINE (80)
INTEGER ACHAR,%ZCHAR, ZERO,NINE
INTEGER KALPHA,KBLANK,KOTHER
INTEGER BLANK
DATA KALPHA/0/,KBLANK/0Q/,KOTHER/0/
DATA BLANK/” “/
DATA ACHAR/“A”/,7ZCHAR/"7°/,2ZERO/"0"/,NINE/"9"/
FOR (I=1; I<=80; I+I+1)
IF (LINE (I)==BLANK) # blank?
KBLANK=KBLANK+1
ELSE IF(ICHAR(LINE
ICHAR (LINE(I)
ICHAR (LINE (I)
ICHAR (LINE (I)
KALPHA=KALPHA+1
ELSE
KOTHER=KOTHER+1 #other

e e

1))>=ICHAR(ACHAR) & # letter or digit?
<=ICHAR (ZCHAR) | # | is logical .OR.
>=TCHAR (ZERO) &
<=ICHAR (NINE))

Nt S o

The reader may be concerned at this point about the
scope of the FOR loop. Are some statement block defining
brackets required? The answer is no, From the point of
view of RATMAC, the whole IF...ELSE IF...ELSE structure is a
single, albeit extended, statement. A second feature
concerns the test for the letter/digit type. The condition
is an extended one which cannot be completed o©on a single
input line (it could be shortened and made more efficient by
defining some auxillary variables). RATMAC is programmed to
take care of this and will test for continuation lines, The
mechanism RATMAC uses to detect such cases is a balanced
parenthesis count., WNote that this mechanism only applies to
RATMAC statements (i.e. those that contain a RATMAC
keyword) . Ordinary FORTRAN statements will not be
automatically continued, If an ordinary non=RATMAC
statement needs to be continued, two mechanisms are
provided., The first is that a line ending in a comma is
automatically continued; the second mechanism will be
discussed when digraphs are introduced.

Now consider the following modification of the basic
problem. Suppose the count of blank characters is not to be
recorded and, in addition, counting is to stop when a #
character is detected in the array LINE. The salient code
could be modified as follows:

Page 17

Decision Control Structures

INTEGER SHARP
DATA SHARP/“#°/
FOR (I=1; I<=B0; I=I+1)

IF(LINE{I)==SHARP) # terminate
BREAK % get out of loop at
ELSE IF (LINE(I)==BLANK) # blank
NEXT # no need to look at
this character further
ELSE IF ({) # alphanumeric
ELSE $ other

The BREAK statement is used to prematurely terminate
the FOR loop. The NEXT command is used to skip processing
of an uninteresting character,

The IF...ELSE structure can be ambiguous., Consider the
indented code patterns:

IF (conditionl)
IF (condition2)
<block2>
ELSE
<plock3>
and
IF {(conditionl)
IF (condition2)
<block2>
ELSE
<block3>

In the first form, the indentation implies that the
ELSE is associated with the first IF, and in the second one
it implies that the ELSE is associatd with the second IF. A
convention adopted in RATMAC is that in such an ambiguous
situation, an ELSE is associated with the latest unELSE’d
IF,

The various possible outcomes of such a test structure
are:s

condition 1 condition 2 Action
true true block 2
false true no action
true false block 3
false false v no action

Page 18

RATMAC Primer

Thus, the second indented structure is the correct one
as interpreted by the RATMAC pre-processor. Of course, the
structure may be made explicit wusing block delimiter
brackets, For example, 1if structure one is actually the
desired structure, the following could be writtens

IF éconditionl)

IF (condition2)
<block2>

ELSE
<block3>

Most writers of structured programs believe that
statement brackets make the program structure more clear to
the original coder and any subsequent readers. The use of
statement brackets will avoid ambiguity.

Page 19

Miscellaneocus Features

Character Set

RATMAC is designed to function with the full ASCII
character set., It will accept both upper and lower case
letters,

The case of the RATFOR keywords: DO, FOR, WHILE,
REPEAT, UNTIL, BREAK, NEXT, IF, ELSE, and INCLUDE is
unimportant, The 1letters can be all upper case, all lower
case, or any mixture of cases,

The case of the built-in macro names and DEFINE follow
a more restrictive set of rules, The letters must be all
upper case or all lower case. A case mixture 1is not
allowed.

User defined DEFINE and macro names must be used
exactly as they are defined if they are to be recognized.

On a given computer which does not accept all of the
ASCII characters it may be necessary to substitute some of
the unavailable characters with digraphs, The available
digraphs are described below.

Program Format

The input to a RATMAC program is free form. Statements
may appear anywhere on an input 1line and users are
encouraged to make use of space and tab characters for
structural indentation,

A comment may appear on any line by using the hash, #,
mark, The hash mark and the remainder of the input line are
ignored by RATMAC. The "C", comment, line should not be
used in RATMAC code, It will be mispositioned by RATMAC
(i.e. it will start in column 7 as do normal FORTRAN
statements) .

Page 20

RATMAC Primer

Blanks are significant in RATMAC. Keywords may not
contain imbedded blanks - they will not be recognized and
they must end with a non-alphabetic character - a blank is
satisfactory for this purpose, This feature may be used to
advantage 1if a keyword has a meaning to your compiler. For
instance, the word DEFINE is used in some FORTRAN
implementations. Writing the word DEFINE as DEF INE will
ensure that RATMAC will not recognize the word but the local
compiler will. RATMAC keywords are reserved; they should
not be used as FORTRAN variables. (It should be noted that
the ANSI FORTRAN standard beyond FORTRAN 77 will probably
make blanks significant).

Running a RATMAC Program

The details of running a RATMAC program are very
machine-dependent and operating system-dependent, Briefly,
RATMAC 1is expecting its initial input from the system
standard input unit, taken as wunit 5 1in the distributed
version, Two output streams are produced by RATMAC. The
first, appearing on unit 6, is human readable and contains
echoed input, generated FORTRAN output, and any diagnostic
messages. The second stream, appearing on wunit 7 in the
distributed RATMAC, centains the generated FORTRAN code and
can be sent directly to a FORTRAN compiler for compilation.
The logical unit numbers are operating system dependent and
may be different on vyour system from the standard
distribution system., Tt is also important to note that the
statements which are passed through to the compiler must
conform to either the FORTRAN 66 or FORTRAN 77 ANSI
standard - whichever is being used on the local machine,

The following is a typical "runstream"” on a UNIVAC 1100
operating systems

@RUN . 8ign on
@ASG,T OUTRAT,F///256 . output file

QXQT CHIMP*ABS, RATMAC . execute RATMAC

e
®

RATMAC code

®

@EOP
@ADD,E OUTRAT. . pass generated "runstream”
. to system

®

. additional commands (if any)

Page 21

Miscellaneous Features

RATMAC Generated FORTRAN Code

The FORTRAN code generated by RATMAC is deliberately
made unattractive. All non-essential blanks are eliminated
from the code. This is done to discourage the user of
RATMAC from maintaining the generated FPORTRAN rather than
the original RATMAC code. Occasionally it becomes necessary
to cross-reference the RATMAC code with the generated
FORTRAN, RATMAC offers two direct methods of such
cross~referencing,

Cross-referencing by Line Number

RATMAC maintains internally a 1line count on the
generated FORTRAN code. This line count is printed on the
human readable RATMAC output (assuming the S option is on;g
see FLAGOFF: and FLAGON: below) at the beginning of each
line following the input 1line number and current brace
count, The FORTRAN line count is reset to 1 every time an
END statement is encountered. Thus, line number diagnostics
from your compiler can be linked directly to the RATMAC
listing (the line number may be in error by one or two since
RATMAC assumes each line output is FORTRAN code when in fact
some may be operating system control lines).

Cross~referencing by Comments

By Jjudicious use of the C option of FLAGON: and
FLAGOFF: (see below) the user is able to insert all
non-empty RATMAC comments into the generated FORTRAN code.

FPORTRAN Genevrated by RATMAC Constructs

The final non-direct method of cross-referencing RATMAC
and its output 1is by direct "reading” of the FORTRAN
output, The £ollowing summary shows the code that is

Page 22

RATMAC Primer

generated by RATMAC to emulate its control structures. L,
L, w2, . . . etc, are sequential labels generated
internally by RATMAC,

Note that RATMAC may, on occasion, eliminate
unnecessary CONTINUE statements. This is done when RATMAC
can detect the formation of "dead" or unreachable code,

DO Statement

DO <limits statement>
<gtatement block>

becomes:

DO L <limits statement>
<statement block>
L CONTINUE
.1 CONTINUE

FOR Statement

FOR (<initialization>;i;<condition>;<reinitialization>)
<statement block>

becomes:
CONTINUE
<initialization>
L IF{.NOT. (<condition>)) GO TO L2
<gtatement block>
L1 GO TO L
L2 CONTINUE

WHILE Statement

WHILE (<condition>)
<statement block>

Page 23

Miscellaneous Peatures

becomes:

CONTINUE
L IF(.NOT. (<condition>)) GO TO L1
<statement block>
GO TO L
L1 CONTINUE

REPEAT Statement

REPEAT
<gstatement block>

becomes:
CONTINUE
L CONTINUE
<statement block>
L1 GO ™0 L
.2 CONTINUE

REPEAT. . .UNTII, Statement

REPEAT
<statement block>
UNTIL (<condition>)
becomes:

CONTINUE

L CONTINUE
<gstatement block>

L1 IPF(.NOT. (<condition>)) GO TO L
L2 CONTINUE

NEXT and BREAK Statements

The NEXT statement generates a GO TO label where label
is the generated statement number immediately following the
<statement block> in a DO, FOR, WHILE, or REPEAT loop.

Page 24

RATMAC Primer

The BREAK statement generates a GO TO label where label
is the generated statement number immediately after the loop
structure,

The following shows the NEXT and BREAK statements in a
REPEAT. . .UNTIL loop:

REPEAT

<gtatement block 1>
NEXT
<statement block 2>
BREAK
<gtatement block 3>

UNTIL (<condition>)
becomes:
CONTINUE
L CONTINUE
<statement block 1>
GO TO L1
<statement block 2>
GO TO L2
<statement block 3>
L1 IF(.NOT. (<condition>)) GO TO L
.2 CONTINUE

IF Statement

IF (<condition>)
<statement block>
becomes:
IF (. NOT, (<condition>)) GO TO L
<statement block>
L CONTINUE

IF.,..ELSE Statement

IF {(<condition>)
<true statement block>
ELSE
<false statement block>
becomes:
IF{.,NOT, {(<condition>)) GO TO L
<true statement block>

Page 25

Miscellaneous Features

GO TO L1

L CONTINUE
<false statement block>

1.1 CONTINUE

Reserved Characteres in RATMAC

RATMAC makes extensive use of special characters. The
meaning of the special characters may be overridden or
avoided by using the digraph equivalents (see below),

The following is a complete list of reserved special
characters:
hash mark: used to start a RATMAC comment

semi-colon: wused to separate multiple RATMAC
statements

wa@

¢ colon: wused to terminate a macro name
> greater: wused in a relational operator > or »>=
< less: wused in a relational operator < or <=

! exclamation point: wused as logical negation in I=
(.NE.) or ! (.NOT.)

caret: same meaning as |

\ backslash: wused as a logical .OR. operator
| bar: same meaning as \

& ampersand: used as a logical .AND. operator

double quote: used to delimit a Hollerith string that
is subject to DEFINE and MACRO expansion

single quote: used to delimit a Hollerith string that
is not subject to DEFINE or MACRO
expansion

[] square brackets: used to protect a string from MACRO
or DEFINE examination

{ } curly brackets: used to define a statement block

Page 26

RATMAC Primer

Digraphs

Character set limitations on many computers demand the
introduction of digraphs. A digraph consists of an "escape"
character followed by the digraph identification character.
The dollar sign, S, is the RATMAC escape character. The set
of digraph characters available in RATMAC can conveniently
be divided into two distinct groups:

Group 1l: Digraphs for characters with a special
meaning in RATMAC., Use of a digraph from this
group override the usual RATMAC interpretation of
the digraph symbol (i.e. > is not translated to
LGT.) .

Diagraph Output Character
$> >
§< <
S: :
$$ $
$ ({
$) | J
$y ’
SL (
SN used internally
SR)
$S5 used internally
Sl [
$]]
g .

Page 27

Miscellaneous Features

Group 2: Digraphs for statement editing

Digraph Meaning

5P Position next output character
in position 1 of output line

SB An essential blank in an output line

S Treat the next line as a continuation
of the current line

Quoted Strings in RATMAC

RATMAC allows the user to use guoted string constants.

These constants are often used in statements such as:

DATA X/°X"/
Because certain FORTRAN 66 dialects use different
punctuation a "Q" option is provided to automatically
process quoted strings. If the Q option is switched off
using the FLAGOFF: macro, then quoted strings are converted
auvtomatically to the usual Hollerith form nH....

The guotes used to delimit a string constant may be
either a single quote or a double quote. On output the
double quoted form will be converted to the single quote
form, The single and double quote form differ in another
very significant way., The text string with single quotes is
never scanned for macro or defines while a text string with
double quotes is scanned for macro and defines,

For example:
macro: (MADXIM: ,100)
“Maximum dimension is MAXDIM:”
is output intact, whereas
"Maximum dimension is MAXDIM:"
is output as

“Maximum dimension is 1007

Page 28

RATMAC Primer

A quoted string constant may not be continued onto a
second line, If a matching quote 1is not found on the
initial line, RATMAC supplies one automatically,

This ends the description of the elementary command
syntax of RATMAC. The examples at the end of the primer
contain some actual subroutines written in RATMAC. The next
section of the primer is concerned with the string
manipulation features of RATMAC, DEFINE, and MACRO.

Page 29

File Inclusion

It is quite common in large programs for certain blocks
of code to appear in a number of places. COMMON blocks are
an obvious example. RATMAC provides a mechanism, the
INCLUDE command, for including such blocks of code with a
single command. This shortens a program and also makes its
maintenance easier, The mechanism for implementing the
INCLUDE command ig very machine-dependent. The
machine-independent version of RATMAC implements the command
with the following svntax:

INCLUDE <logical unit numbey of file>

When an INCLUDE command is met, the RATMAC input unit 1is
switched from its current wunit to the unit specified by
<logical unit number of file>., Subsequent input is taken
from this file until an end-of-file is detected; input then
reverts to the original input unit at the next line. A file
is rewound after it has been read so that it may be
INCLUDE“d many times.

INCLUDE”d files may include the INCLUDE command up to a
depth of £five, Recursive use of this feature 1is not
allowed,

It is the user”s responsibility to assure that the
logical units specified are available to RATMAC and that
they contain the appropriate information.

Page 30

RATMAC Primer

Symbolic Constants

The user of RATMAC is encouraged to make extensive use
of the symbolic constant feature, Two such features are
available - DEFINE and MACRO:. DEFINE is simplistic and
less efficient to use than MACRO:. It is included mainly to
make RATMAC and RATFOR completely compatible, Users are
encouraged to make use of the MACRO: facility described
later. It will accomplish exactly the same function as the
DEFINE and more, but, at a lower preprocessing overhead.

The syntax of the DEFINE command is:
DEFINE (<name>,<arbitrary string>)

<name> is an identifier (of up to 132 characters) containing
letters and digits. <arbitrary string> is a string of
arbitrary characters. For example:

DEFINE (EOF,~1)

DEFINE (BITSPERWORD, 36)
DEFINE (VERSION,PDP)
DEFINE (MAXDIM, 2000)
DEFINE (BLANK,”)

The aim in all cases is to replace an obscure or machine
dependent string by a more evocative one, In addition, the
value of a string may be localized in a single place where
it is easily changed. For example, if at some time in the
future the end-of-file flag had to be changed to 128, then
the following change in the DEFINE command would imply a
global change throughout the program:

DEFINE (EOF, 128)

The change would be accomplished simply by rerunning the
program through the RATMAC pre-processor, followed by
recompilation.

A DEFINE command may refer to another defined string.
This is often a useful feature, but it has a number of
pitfalls including the introduction of an unintended
recursion. Consider the following two DEFINE commands
followed by the invocation of "one":

Page 31

Symbolic Constants

DEFINE (one, the number before two)
DEFINE (two, the number after one)

A token is a string of letters/digits or a special character
such as a blank. The token "one" is recognized as a
"defined name"” and its definition 1is substituted. The
definition string 1is then subjected to analysis and the
token "two" is found. This in turn 1is recognized as a
"defined name" and the definition fetched and scanned. The
name "one” is found and the process repeats forever.

Another difficulty arises when an attempt is made to
try to redefine a name in a DEFINE command. For example, if
ARGFLAG is defined as follows:

DEFINE (ARGFLAG,S)

and subsequently an attempt is made to redefine it with the
DEFINE:

DEFINE (ARGFLAG,!)

then the syntax of the DEFINE command is violated, In the
second DEFINE, ARGFLAG is recognized as a "defined token"
and replaced by its definition, $. Thus, the net effect is
to construct a DEFINE command:

DEFINE(S,!)

which is illegal since $§ is not an alphanumeric token.

To overcome this problem, RATMAC uses the character
pair [and] as string protection brackets. A string of
characters placed in square brackets is not scanned for
defined tokens (nor macro tokens, see below). However, the
outer level of square brackets is stripped during the scan.

Consider the DEFINE command:

DEFINE (title, The Wizard of Id)

Page 32

RATMAC Primer

Then the string:

The [title] is title

would result in:

The title is The Wizard of Id

Obviously we can use the string protection brackets when we
define a name, Thus:

DEFINE ([ARGFLAG],!)

will produce a redefinition of ARGFLAG, changing it from 8§
to ! without producing an error message.

Page 33

Macros

The MACRO: feature provided in RATMAC has all of the
features of the DEFINE command plus many more, The basic
syntax of the MACRO: definition command is:

MACRO: (<macro name>,<macro definition>)

where <macro name> is an alphanumeric token which is
terminated by a colon and <macro definition> is an arbitrary
string of characters. BAn underline character is considered
to be an alphanumeric character if it appears in a macro
name. The following are examples of macros:

MACRO: (EOF: ,~1)
MACRO: (CHARS PER WORD: , 4)

A macro is invoked by using its name at some appropriate
point in a RATMAC program., The macro name is then replaced
by the definition string in the FORTRAN output

So far, the MACRO command and the DEFINE command have
identical properties., The MACRO command in practice is more
efficient since macro names are easily recognized and
non-macro names need not be looked for in RATMAC”s internal
macro tables, Once a DEFINE command is processed by RATMAC,
the pre-processor 1is forced to look up every variable name
in its internal tables. This 1s a time consuming process in
a long program with many variables,

The threefold power of the macro facility is:

1. Arguments - a macro name may have associated
arguments,

2, Built-in macros - RATMAC has several very useful
built-in macros.

3. Recursion - a macro may invoke other macros
including itself,

Page 34

RATMAC Primer

Macro Arguments

The arguments of a MACRO are represented
combination $n where n is an integer between 1
Consider the MACRO definition:

MACRO: (READLINE: ,READ ($1,$2,END=84) $3)
The invocation in a RATMAC programs
READLINE: (5,10,BUFFER,999)
will producd the FORTRAN code:
READ (5,10,END=999) BUFFER
The MACRO definition:
MACRO: {(MAX: ,MAX0($1,52))
followed by:
MAX: (I4+J,J-K+1)
produces:

MAXOQO (I+J ,0-K+1)

Page 35

by
and

the
9&

Built-in Macros

RATMAC comes with a number of built-in macros which
have proven very useful in the preparation of programs,
User defined macros are such an important feature of RATMAC
that another section of the primer 1is devoted to their
preparation and use,

Defining and Deleting

MACRO:, ¥XMACRO:, and SAVE:

MACRO has been discussed in its simplest form
previously. XMACRO: is used to delete a macro from the
internal tables within the RATMAC pre-processor. The syntax
of ¥XMACRO: is:

AMACRO: { [<macro name>])

The string protection brackets are not strictly part of
the syntax, but in most cases are necessary to prevent the
macro <macro name> from being evaluated (i.e. being replaced
by its definition).

The macro SAVE: is used to save all macros defined
before and including the one named as an argument. All
macros defined after the macro named as an argument are
deleted, The syntax of SAVE: is as follows:

SAVE: ([<macro name>])

This macro 1s wuseful in returning a set of RATMAC code to
some "base” level after temporary macros have been defined,
For example, consider the following:

MACRO: (o0 oooos)
MACRO: (LAST PERMANENT MACRO:,) #

o

additional code and temporary macros

o

SAVE: ([LAST PERMANENT MACRO:]) # delete all temporary macros

Page 36

RATMAC Primer

Ssuch constructs are useful in co-operative programming
efforts since temporary macros can be made "local™ to a
piece of code with little effort on the user”s part,

Arithmetic

INCR:

Another ©pair of macros, INCR: and ARITH:, are used to
provide a simple integer arithmetic facility. The macro
INCR: has a single. numeric argument. On invocation the
macro is replaced by the argument incremented by one,
For example, suppose we have the following sequence:

MACRO: (MAXCARD: ,80) # size of input line
INTEGER LINE (INCR: (MAXCARD:z))

The second line of RATMAC produces:

INTEGER LINE(81)

A non-numeric argument is taken to be zero,

ARITH:
The ARITH: macro provides a more sophisticated
facilitys it can perform addition, subtraction,

multiplication, division, and exponentiation on integer
operands., The syntax of ARITH: is:

ARITH: (<operand>,<operator>,<operand>)

where <operator> is +, =, *, /, or %%, As an example,
suppose we have two macros:

Page 37

Built-in Macros

MACRO: (BITSPERWORD: , 36) # UNIVAC word
MACRO: (BITSPERCHAR:, 9) # ASCII code

then
MACRO: (CHARSPERWORD: ,ARITH: (BITSPERWORD: ,/,BITSPERCHAR:))
followed by the invocation:
INTEGER UNPACK (CHARSPERWORD:)
would produce:

INTEGER UNPACK (4)

Character String Manipulation

LENSTR:

RATMAC provides five string manipulation macros., The
simplest, LENSTR: (<string>), returns the length, in
characters, of the string, <string>., Thus:

LENSTR: (abcdefghijklmnopgrstuvwxyz)

has a replacement value of 26.

SUBSTR:

The macro SUBSTR: is a substring selection macro, 1Its
syntax is:

Page 38

RATMAC Primer

SUBSTR: (<string>,<start>,<length>)

where <string> is the string to be selected and <start> 1is

the starting character position in the string. The
character positions are numbered 1,2,... from left to
right. <length> specifies the number of characters to be

extracted. For example:
SUBSTR: (1234567890,3,5)
is the string 34567.

SUBSTR: is quite permissive in 1its arguments, If
<length> 1is omitted (together with the preceding comma) or
if it is too big, the rest of the string is used. If
<start> 1is out of range in the string, then the null string
is returned.

IFELSE:

The macro IFELSE: is a string selector macro; it has
four arguments., Its syntax is:

IFELSE: (<stringA>,<stringB>,<stringC>,<stringD>)

If <stringA> and <stringB> are identical, character for
character, then <stringC> 1is substituted for the macro
invocation. If they are not identical, then <stringD> is
substituted.

In the following example, a macro, CHPW:, is set to 1
or 4 depending on the definition of a macro, PACKING:

MACRO: (PACKING: ,YES) # turn on packing
MACRO: (CHPW: , IFELSE: (PACKING: ,YES,4,1)) # select

Page 39

Bullt-in Macros

CHR: and ORD:

The built-in macros, CHR: and ORD:, have the following
syntax:

CHR: (<decimal ASCII code wvalue>)

ORD: (<ASCII character>)

The two macros are used for conversion between the graphic
representation of an ASCII character and its decimal numeric
equivalent, For example:

CHR: (32) is replaced by a blank

ORD: (a) is replaced by 97

Preprocessor Control

FLAGON: and FLAGOFF:

Two related macros are FLAGON: and FLAGOFF:. The
argument for both macros is a single upper case letter.
These two macros are used to control the mode of operation
of RATMAC. The letters and their meanings when used 1in
FLAGON: (<letter>) are:

A Do not pass generated FORTRAN directly to the
compiler (this option may not be implemented on all
machines) .

C Pass non-empty RATMAC comments to the output FORTRAN
as standard "C" comments,

D Print out a line-by-line description of each macro
as it is evaluated.

I, List the generated FORTRAN output on the standard
output unit,

Page 40

RATMAC Primer

M List all of the currently defined macros (with their
definitions) at run termination.

Q Do not translate gquoted strings “...7 or ".,.." to
the Hollerith form, nH....

R Pass all code through the RATFOR section of RATMAC
unchanged.

S List the input lines on the standard output unit.
Fach line is preceded by a line number, a statement
block bracket count, and a generated FORTRAN line
number.

Initially, flags Q, R, and S are turned on. The R flag
is useful for taking advantage of the macro feature of
RATMAC without adopting the RATFOR control structures., With
the R option turned off, 1lines of FORTRAN are passed
directly to the output file after the expansion of any
macros in the line. This is also useful for passing FORTRAN
statements, unchanged, through the RATMAC preprocessor,

Page 41

An Alternative INCLUDE Mechanism

The INCLUDE mechanism may or may not be implementable
on your machine in a convenient way. This section deals
with achieving the same effect using the MACRO: command.,
Consider the following MACRO: command:

MACRO: (SYSCOM: ,COMMON/SYSBLK/A (MAX) ,B (MAXP1) 4
COMPLEX A #
DOUBLE PRECISION B) #

The COMMON block can be inserted anywhere in the FORTRAN
code by invoking the name SYSCOM: in the RATMAC code,

The only limitation imposed on this use of MACRO: is
the RATMAC-imposed limit on the length of the defined string
(250 characters in the distributed version). However, this
limitation is easily avoided by the use of string protection
brackets. Consider the following three MACRO: commands:

MACRO: (SYSCOMPART1: ,COMMON/SYSBLK/A (MAX) ,B (MAXP1)) #
MACRO: (SYSCOMPART2: ,COMPLEX A #

DOUBLE PRECISION B) #

MACRO: (SYSCOM: , [SYSCOMPART1: SYSCOMPART2:]) #

Invocation of SYSCOM: produces exactly he same results as
before, but the definitions are split among three MACRO:”s
making available 750 (3 X 250) characters of definition.
The interested reader should implement the above MACRO:”s
with and without the string protection brackets in the last
MACRO: . With no string protection brackets, an error
message results. 1In this example the # which indicates the
end of the line is important since all the blanks at the
right hand end of the lines are stored. Leaving the # off
will cause the 750 characters available to be used up very
quickly.

Page 42

RATMAC Primer

Macros Within Macros

The Non-recursive Case

Macros may contain other macros as part of their
definition., A question that immediately arises is: At what
stage is a macro evaluated? Consider the following sequence
of macros and an invocation:

MACRO: (S1: ,ABCDE)
MACRO: (82: ,S1:FGHIJ)
MACRO: ([S1:],VWXYZ)

§2:

This produces the string ABCDEFGHIJ. The macro Sl:
associated with the definition of 82: 1is evaluated
immediately and the subsequent redefinition of §8Sl: has no
effect on 52:

Compare this with the following sequence:

MACRO: (S1: ,ABCDE)
MACRO: (523, [S1:1FGHIJ)
MACRO: ([S1:] ,VWXYZ)

followed by the invocation 82:. The result now is the
string VWXYZFGHIJ. When 82: 1is invoked, the definition
string found is S1:FGHIJ (remember a layer of string
protection brackets is stripped each time a protected string
is examined). The token Sl: is recognized as a macro and
the current definition (i.e. VWXYZ) is substituted.

String protection brackets are useful in many
circumstances. They can be used to conserve space in the
macro tables, stave off evaluation of a macro, and prevent
evaluation of a macro whose arguments are defined by the
arguments on an outer macro,

For example, in the first definition cof $§2: above, the
definition string is 10 characters long, ABCDEFGHIJ. 1In the
second definition of §2:, the definition string is only 8
characters long, S1:FGHIJ.

Page 43

Macros Within Macros

Consider the following macros which can be used to
change a dimension on an array depending on whether PACKING:
is defined as YES or otherwise.

MACRO: (PACKING: ,YES) # turn on packing
MACRO: (CHPW: , IFELSE: (PACKING: ,YES,4,1))
MACRO: (DIM: ,ARITH: (ARITH: (ARITH: ($1,-,1),/,CHPW:) ,+,1))

The RATMAC statement:
INTEGER LINE(DIM: (80))
might be expected to produce:
INTEGER LINE{20)
In fact, it produces the unwanted:
INTEGER LINE(1)
The reason for this lies in the macro invocation:
ARITH:(Sl;m;l}

The first argument is not defined (it will be when DIM: is
invoked), so zero is used.

The problem is easily corrected by wusing string
protection brackets:

MACRO: (DIM:, [ARITH: (ARITH: (ARITH: ($1,-,1) ,/,CHPW:) ,+,1)])

In this case, the arithmetic will not be performed until
DIM: is invoked; at which time $1 is well-defined so that
INTEGER LINE(20) will be produced,

Page 44

RATMAC Primer

The Recursive Case

Macros may invoke themselves recursively. In this
case, string protection brackets are mandatory. For
example, consider the following macro to generate the
factorial of a number. The macro makes use of the
relationship:

factorial(n) = n*factorial (n-1)

and

]
ot

factorial (0)

Recursion is terminated when factorial(0) is reached, In a
macro, the recursion is terminated by the IFELSE: macro.
The following definitions perform the evaluations

MACRO: (M:, [ARITH: (S$1,%*,52) 1) # define some auxilliary
MACRO: (D¢, [ARITH: ($S1,-,1) 1) # macros
MACRO:(FAGTORIAL:F[IFELSES($1;0515[Mi($15FACTORIAL2(D:($l)))})])

The outer set of string protection brackets is required
to prevent the evaluation of the IFELSE: when FACTORIAL: is
defined. The inner set is required to prevent the
evaluation of M: ($1,FACTORIAL:(D:($1))) when the IFELSE: is
being evaluated at invocation time.

Macros calling other macros tend to be complex., Errors
most frequently encountered involve unbalanced brackets and
parentheses, Debugging of macros may be most easily
undertaken using the D option with the FLAGON: macro. This
option prints out the macro evaluation stack as each closing
parenthesis on a macro invocation is detected., The printout
gives the macrc definition, followed by the name, followed
by the macro arguments; one to a line,

The form of macro arguments is quite permissive.
However, a number of problems can arise 1if the argument
contains certain special characters. An argument containing
a comma, an unbalanced parenthesis, or a square bracket,
interferes with the macro scanning mechanism.

Page 45

Macros Within Macros

A comma used as an argument character can be
distinguished from an argument delimiting comma by placing
the former in string protection brackets. For example, the
macro call:

ZAP: (A[,1B)

has a single argument A,B. An alternative solution would be
to use the appropriate digraph:

ZAP: (AS,B)

Note that only commas not in balanced parentheses need be
treated in this fashion. For example:

ZAP: (A(I,J))

has a single argument: A(I,J)

Unbalanced parentheses «can also use the digraph
mechanism, For example, to supply a left parenthesis as
an argument, we could write:

ZAP: (SL)

Page 46

RATMAC Primer

Some Examples of Macros

This section discusses a series of macros that can be
used to isolate the machine-dependence of a given program,

The macro IFDEF: is a three argument macro. The first
argument is a macro name (less the terminating colon). IE
the macro name is currently defined, then the macro is
replaced by argument two; otherwise, by argument three,

For example, the invocation:

IFDEF ¢ (MACRO,YES ,NO)

results in YES (assuming the system macro, MACRO: has not
been deleted).

The macro IFDEF: works by comparing the macro name and
its definition using IFELSE:. If the macro is defined, the
name and definition will be different, If the macro is not
defined, no substitution will occur, and the name and its
“definition” will be the same. The macro definition is:

MACRO: (IFDEF:, [IFELSE: ([$1:1,$81:,83,82) 1)

The next example concerns the generation of a sequence
of numbers given a "seed" number. Such a macro is useful
for generating unigue statement labels.

Assume that a macro, SEED:, is available which will
supply a seed integer to start a sequence:

MACRO: (SEED: ,2000)

The macro MAKENUM: is now defined in the following way. A
new macroc SEED: is defined with a value which is the current
value of SEED: reduced by the value of the argument. This
new macro SEED: is the invoked to produce the number. The
definition is:

MACRO: (MAKENUM: , [MACRO: { [SEED:] ,ARITH: (SEED: ,-,$1))SEEDs])

Page 47

Some Examples of Macros

The invocation:
MAKENUM: (2)
produces:
1998
A subsequent invocation:
MAKENUM: (5)
produces:
1993
We can now use MAKENUM: and SEED: to produce a macro

that will generate an error message through a macro
invocation:

MESSAGE: (LUN,THIS IS A MESSAGE ON LOGICAL UNIT LUN)

The first argument will be the logical unit, the second is
the message string.

The definition of macro MESSAGE: is:

MACRO: (MESSAGE: , [WRITE ($1,MAKENUM: (1))
SEED: FORMAT (1X,%$2")1)

Assuming a value of SEED: equal to 2000 when MESSAGE: is
invoked, the following code will be produced:

WRITE (LUN, 1999)
1999 FORMAT (1X, THIS IS A MESSAGE ON LOGICAL UNIT LUN”)

Macro definitions can be cascaded easily. For example,
suppose a macro FATALMESSAGE: is needed. It is to have the
same characteristics as MESSAGE: except that it is
terminal. A suitable definition of FATALMESSAGE: would be:

MACRO: (FATALMESSAGE: , [$ (MESSAGE: ($1,5$2) ;CALL EXITS) 1)

Page 48

RATMAC Primer
The invocation:
FATALMESSAGE: (10,FATAL ERROR = STACK OVERFLOW)

produces:

S (
WRITE(10,1998)

1998 FORMAT (1X, FATAL ERROR - STACK OVERFLOW®)
CALL EXIT

$)

The reader should note carefully the inclusion of the
statement block brackets in the definition string. A macro
invocation may occur as part of a control structure and it
is then important that all of the code lines generated by
the macro be included in the scope of the control
structure,

Another use of a macro is in extending the commands of
the basic language. For example, a number of rational
FORTRAN dialects have a feature called procedures, A
procedure is a block of code that is internal to a
subroutine and can be executed repeatedly from various
points within the subroutine. There 1is no mechanism for
passing arguments to a procedure. Three macros called
EXECUTE:, STARTPROC:, and ENDPROC: will be developed which
will simulate the built-in procedure mechanism available in
other structured FORTRAN languages.

The basic mechanism to be used is the following: The
EXECUTE: macro will generate an ASSIGN label to variable
statement, an unconditional jump to the procedure and a
labelled CONTINUE for the return from the procedure,
STARTPROC: will generate a labelled CONTINUE as the entry
point of the procedure, ENDPROC: will generate a GO TO
based on the ASSIGN"d Jjump variable, 0f «course, it is
desirable to have EXECUTE: statements which can be nested,

The preceding statements gloss over problems of how
unigque labels are generated and how to keep track of these
labels, Before dealing with such problems, the use of
procedures in generating easily understood and maintained
programs will be demonstrated.

The problem chosen is the gimulation of a calculator
that operates using reverse Polish notation. It is assumed
that an array of integer codes which define the expression

Page 49

Some Examples of Macros

to be evaluated 1is available. Eight integer codes are
required, The following table gives the meaning of each
code:

MACRO: CODE MEANING

op: 0 operand is in corresponding
position of array REANUM

SUB: 1 binary subtraction

ADD: 2 binary addition

MUL: 3 binary multiplication

DIV: 4 binary division

EXP: 5 exponentiation

ASG: 6 assignment - display result
EOL: 7 end of expression

The basic structure of the program is very easy to write,
It iss

WHILE (NOT END OF EXPRESSION)
$(
IF (OPERAND)
PUSH ON STACK
ELSE IF (OPERATOR)
$(
POP OPERANDS FROM STACK
DO OPERATION
PUSH RESULT ON STACK
$)
ELSE
ERROR
GET NEXT PROGRAM UNIT

$)

It is trivial to translate the program into RATMAC assuming
that the EXECUTE: macro is available. The translated
program is:

Page 50

RATMAC Primer

WHILE (PRGSTR (PTR) ! =EOL:)

$(
IF(PRGSTR(PTR) ==0P2) # operand
$ (
EXECUTE: (PUSHONSTACK)
$)
ELSE IF(PRGSTR(PTR)>=5UB:&PRGSTR (PTR) <=EXP:)
S (
EXECUTE: (POPOFFSTACK)
Op2=0p
EXECUTE: (POPOPFSTACK)
0OpP1l=0p

EXECUTE: (DOOPER)
EXECUTE: (PUSHONSTACK)
$) \
ELSE IF (PRGSTR(PTR)==ASG:)
$(
WRITE (STDOUT: , 1) STACK (NSTK)
1 FORMAT(” CURRENT VALUE”,G12.6)
$)
ELSE
S
MESSAGE: (STDOUT: ,ILLEGAL ITEM IN STRING)
S)
PTR=PTR+1
$)

The overall structure of the program is relatively clear
since it follows the general outline closely. It is obvious
that the program is in the array PRGSTR and the current
"operation"” is pointed to by an index PTR., The following
assumption in the operator test has been made: a single
range test will identify an operator, This obviously limits
the integer wvalues that can be assigned to represent
operators,

With the basic "top" level of the program developed,
the development of the three procedures reguired to
implement the nitty-gritty operations can now proceed. Some
conventions must be adopted., STACK is assumed to be a real
array and NSTK is assumed to be an integer variable, STACK
will be used to hold intermediate vresults and NSTK will
record the posgition of the 1last entry in the stack.
Initially NSTK is zero. The three procedures can be written
as follows:

First, "PUSHONSTACK"
STARTPROC : (PUSHONSTACK)
NSTK=NSTK+1 # increment stack pointer

STACK (NSTK) =REANUM (PTR) # get operand
ENDPROC s (PUSHONSTACK)

Page 51

Some Examples of Macros

Second, "POPOFFSTACK®

STARTPROC: (POPOFFSTACK)
IF(NSTK>0) # enough operands?
$ (
OP=STACK (NSTK)
NSTK=NSTK-1

$)

ELSE # no - error off with message
S
FATALMESSAGE: (STDOUT: , ILL-FORMED EXPRESSION)
$)

ENDPROC : (POPOFFSTACK)

Third, "DOOPER"

STARTPROC : (DOOPER)

IF (PRGSTR (PTR) ==SUB:)
REANUM (PTR) =0OP1~0P2

ELSE IF (PRGSTR(PTR)==ADD:)
REANUM (PTR) =OP1+0P2

ELSE IF (PRGSTR (PTR)==MUL:)
REANUM (PTR) =0P1*0P2

ELSE IF (PRGSTR(PTR)==DIV:)

S (

IF (0P2==0.0)
S(
FATALMESSAGE: STDOUT: ,DIVISION BY ZERO)
$)

ELSE
REANUM (PTR) =0OP1/0P2

$)

ELSE IP(PRGSTR(PTR)==EXP:)

$(

IF(0P1<=0.0)
$(
FATALMESSAGE: {STDOUT: ,EXPONENTIATION ERR)
$)

ELSE
REANUM (PTR) =0P1*%0P2

$)

ELSE # this cannot happen

S (
FATALMESSAGE: {STDOUT: ,SOMETHING WRONG)
$)

ENDPROC: (DOOPER)

This completes the program., The procedure mechanism has
allowed a fairly complex piece of code to be broken up into
four blocks, each one assigned a specific task. Of course,
this could be done by using appropriately defined
subroutines. But, the procedures mechanism avoids the

overhead of a subroutine call and localizes all of the code
in one routine,

Page 52

RATMAC Primer

A final point remains; the placement of the procedure
code, Any convenient unreachable part of the code is
acceptable. The most obvious place in a routine 1is between
the RETURN or STOP statement and the END statement. The
procedure must be defined after the first EXECUTE:
invocation. The order in which the procedures are placed is
also important, The ENDPROC ¢ macro deletes macros
associated with the procedure so it cannot be referenced by
a subsequent EXECUTE:. Thus if a procedure executes another
procedure, the “calling” procedure must be defined before
the "called" procedure,

Having written the program, the only remaining
unwritten pieces are the macros required to implement the
mechanism, The definition of EXECUTE: is:

MACRO: (EXECUTE: , [IFDEF: ($1,, [[MACRO: ([$1:] ,MAKENUM: (1))1])S#
ASSIGN MAKENUM: (1: TO J $1:; GOTO $1l:; SEED: CONTINUE])

Although this macro looks formidable, it 1is relatively
simple in operation. The first line checks to see whether a
macro corresponding to the procedure name already exists,
If the macro exists, nothing happens. If if does not, a
label is generated using MAKENUM: and is saved by defining a
macro based on the procedure name.

The second line produces a second statement label and
generates an ASSIGN“d GO TO, followed by an unconditional
transfer, followed by a labelled CONTINUE. Assuming a SEED:
value of 2000, the invocation:

EXECUTE: (PROC)
would generate:

ASSIGN 1998 TO J1999
GOTO 19299
1998 CONTINUE

and would define a macro PROC: with a definition 1999. Note
that it has been assumed that the user is not currently
using a variable J1999 in the program, By defining the
prefix letter through a macro, it would be possible to
eliminate such a possible conflict,

Page 53

Some Examples of Macros

The STARTPROC: and ENDPROC: macros are simple to
implement. They are:

MACRO: (STARTPROC: ,81: CONTINUE)
MACRO: (ENDPROC: ,GOTO J $1l: [XMACRO: ([$1:1)1)

The invocation:

STARTPROC: (PROC)

generates:

1999 CONTINUE

while the invocation:

ENDPROC ¢ {PROC)

produces:

GOTO J1999

and removes the macro PROC: from the macro tables.

Another use of macros is in the debugging phase of
program development. It is quite common practice to insert
diagnostic print statements in a program for debugging
purposes., When the debugging phase 1is over, the print
statements are removed. Such removal can be time consuming
and gquite often the print statements need to be reinserted
at some later time.

The next example shows how a macro, DEBUG:, can be used
to insert diagnostic printouts and subsequently remove them,

Macro DEBUG: may have a maximum of nine arguments (the
maximum allowed by the macro processor), The first argument
will be an identification string, the second argument will
be a format statement, the remaining seven arguments will be
program variables to be printed.

Page 54

RATMAC Primer

For example:

DEBUG: (LOOP ONE,2F12.2,AVAR,SUM)

will generate:

WRITE (STDOUT: ,1999) AVAR,SUM
1999 FORMAT (1X, "LOOP ONE”,2F12.2)

where STDOUT: is the standard output unit number. The macro
DEBUG: is qguite straightforward, The only problem is
deciding how many arguments are present and distinguishing
the first variable name (which will be inserted without a
leading comma) from subsequent variable names (which will be
inserted with a leading comma). The macro MAKENUM: is used
to generate a unique statement label for the format.

The definition of DEBUG: is:

MACRO: (DEBUG: , [MAKENUM: (1) FORMAT (1X,"S$1",82)
WRITE (STDOUT: ,SEED:)ARG: ($3)CARG: (S4)CARG: ($5) CARG: ($6) $#
CARG: ($7)CARG: ($S8)CARG: {$9) 1)

The two auxilliary macros ARG: and CARG: are very similar.
They test the argument passed to them for the null wvalue,
If the wvalue is null, then nothing is generated; if it is
not, then an argument (possibly preceded by a comma) is
generated,

The definitions of ARG: and CARG: arec:

MACRO: (ARG:, [IFELSE: ($1,,,51) 1)
MACRO: (CARG: , [IFELSE: ($1,,,$,$1)1)

Note that the digraph $, has been used to stop IFELSE: from
becoming confused in counting arguments., A blank has also
been generated after each variable name. This is to stop
the variable name and the macro name from being concatenated
resulting in non-recognition of the macro name.

Page 55

Some Examples of Macros

After the debugging phase is over, the debug code can
be quite simply eliminated by replacing DEBUG: by a new
DEBUG: macro with the following definition:

MACRO: (DEBUG: ,) # null DEBUG:

The debug statements are never physically removed from the
program and can be reactivated by returning to the full
debug definition, re-preprocessing the needed subroutines,
and recompiling the program,

Page 56

RATMAC Primer

Two Complete Examples

This primer is concluded with two complete examples.
The first is an interpolation sub-program, INTERP, INTERP
can be used to interpolate in a sorted table of real
numbers, Two methods, a binary search and a sequential
search, are provided to locate suitable table values for the
interpolation routine, A listing of the RATMAC code, the
generated code and a copy of the test output is shown, The
example shows how "job-control” lines may be interspersed in
the code, In addition, a simple use of "internal
procedures” is shown.,

The second example 1is a simple line-oriented file
editor with the ability to insert, replace, and delete lines
from a file. The line editor is included to illustrate the
use of "top-down" design, and "internal procedures” to aid
in the design procedure.

Example I: A RATMAC Program
for Interpolation in a Table

MACRO: (CTRLSTMT: , [SPQFOR,IS $B $1/%2]1) # UNIVAC JCL LINE
MACRO: (SEED:, 2000)

MACRO: (MAKENUM: , [MACRO: { [SEED:] ,ARITH: (SEED:,~,$1))SEED:])
MACRO: (IFDEF:, [IFELSE: ({$1:],%1:,$3,82) 1)

MACRO: (EXECUTE: , [IFDEF: ($1,, [[MACRO: {[$1:] ,MAKENUM: (1)) 11) $4%
ASSIGN MAKENUM: (1) TO J $1l:3 GOTO $1:; SEED: CONTINUE])
MACRO: (STARTPROC:,$1: CONTINUE)

MACRO: (ENDPROC: ,G0 TO J $1s: [XMACRO: {([$1:1)1)

MACRO: (DEBUG: , [MAKENUM: (1) FPORMAT (1X,"$1",$2)

WRITE {STDOUT: ,SEED:) ARG: ($3) CARG: {$4)CARG: ($5)CARG: ($6) $#
CARG: ($7)CARG: ($8)CARG: ($9) 1)

MACRO: {(STDOUT: ,6) # PRINTER UNIT

MACRO: (ARG:, [IFELSE: ($(1,,,51)1)

MACRO: (CARG:, [IFELSE: ($1,,,$,81)1)

CTRLSTMT : (INTERP)

SUBROUTINE INTERP (XIN,YOUT,XTAB,YTAB,MAXTAB,NSRCH,BSRCH, NORDER)
REAIL XTAB (MAXTAB) ,YTAB (MAXTAB)

LOGICAI, BSRCH

#
THIS ROUTINE PERFORMS A NORDER (ASSUMED EVEN) POINT

INTERPOLATION IN TABLES XTAB/YTAB OF LENGTH MAXTAB

#

XIN SPECIFIES THE POINT TO BE INTERPOLATED; YOUT IS THE

Page 57

Example T

INTERPOLATED VALUE

#% NOTE *% XIN MUST LIE WITHIN THE TABLE RANGE
THE ROUTINE ASSUMES THAT XTAB IS SORTED IN EITHER
ASCENDING OR DESCENDING ORDER

IF BSRCH IS ,TRUE, A BINARY SEARCH IS USED TO LOCATE
APPROPRIATE VALUES FROM THE TABLES

I¥ BSRCH IS .FALSE. A LINEAR SEARCH STARTING AT INDEX
NSRCH IS INITIATED TO LOCATE THE VALUES. NSRCH IS UPDATED
DURING THE SEARCH PROCESS

#

#

#

#

#

#

¥

#

#

¥

#

#

BSRCH = ,TRUE. IS APPROPRIATE FOR "RANDOM" INTERPOLATION
BSRCH = .FALSE. IS APPROPRIATE FOR "PROGRESSIVE"
#
#
#
#
LO
#
#
#
M
#
#
#
IF

it

INTERPOLATION
LOCAL VARIABLES
OGICAL ASC # FLAGS SORT MODE OF XTAB
DEFINE A USEFUL LOGICAL CONSTRUCTION
ACRO: (LOGTST: , (ASC&XIN<=$1\ !ASC&XIN>=$1))
SET ASC
(XTAB (1) < XTAB(MAXTAB))
ASC = ,TRUE. # ASCENDING
ELSE
ASC = ,FALSE. # DESCENDING

NHALF=NORDER/ 2
NUP=MAXTAB-NHALF

z CLASSIFY INTERPOLATION

%F(MAXTAB<2NORDER) # TWO FEW VALUES - DO BEST WE CAN
gézlg MU=MAXTAR

EL%% IF (LOGTST: (XTAB (NHALF))) # TOO CLOSE TO LOW END

OF TABLE - ADJUST
INTERPOLATION
MP=1; MU=NORDER
S)
ELSE IF(ILOGTST: (XTAB(NUP))) ¢ TOO CLOSE TO TOP END
¥ OF TABLE - ADJUST
INTERPOLATION
$(
MP=MAXTAB+1-NORDER; MU=MAXTAB
$)
ELSE IF(BSRCH) # BINARY SEARCH
$(
Mp=1
MU=MAXTAB
REPEAT

Page 58

RATMAC Primer

$(
K= (MP+MU) /2
IF (LOGTST s (XTAB (K)))
MU=K-1
ELSE
MP=K+1
DEBUG: (BINARY,2E12.6$,T4,XIN,XTAB (K) ,K)
$)
UNTIL (MP>MU)
MP=MU-NHALF+1
MU=MP+NORDER-1
$)
ELSE
$ (
IF (NSRCH<1 \ NSRCH>MAXTAB) # NSRCH OUT OF RANGE
NSRCH= (1+MAXTAB/2) # ADJUST IT
WHILE (! LOGTST: (XTAB (NSRCH)))
NSRCH=NSRCH+1 # SEARCH FORWARD
WHILE (LOGTST: (XTAB (NSRCH-1)))
NSRCH=NSRCH-1 # SEARCH BACKWARDS
MP=NSRCH~NHALF
MU=MP+NORDER~1
DEBUG: (SEQUENTIAL,2E12.6[,],14,XIN,XTAB (NSRCH) ,NSRCH)
$)
NSRCH=MP+NHALF-1 4 UPDATE NSRCH EVEN
BSRCH = ,TRUE,
#
DO INTERPOLATION
#
YOUT=GRANGE (XIN,MP,MU,XTAB, YTAB)
RETURN
END

CTRLSTMT : (GRANGE)
FUNCTION GRANGE (XIN,MIN,MAX,XTAB,YTAB)
REAL XTAB (1) ,YTAB (1)

¥
DOES LAGRANGE INTERPOLATION
#
GRANGE=0.0
FOR(I=MIN; I<=MA¥:; I=I+1)
S (

PROD=YTAB (I)
STO=XTAB (1)
FOR (J=MIN; J<=MAX; J=J+1)
IF (I1=J)
PROD=PROD* (XIN-XTAB (J))/ (STO-XTAB (J))
GRANGE=CGRANGE+PROD
$)
RETURN
END

Page 59

Example I

CTRLSTMT ¢ (MAIN)
LOGICAL BS
DIMENSION X (201),Y(201),U(201) ,W(201)
N=201
NS=0
#
GENERATE TWO SETS OF TABLES
#
FOR(I=-100; I<=100; I=I+1)
$ (
X(I+101)=I
U(I+101)=-1
Y(I+101)=I%%4-T%%3
W(I+101)=-¥Y(I+101)
$)

#

GENERATE TABLE USE BINARY SEARCH
#

M=4 4§ ORDER OF INTERPOLATION
BS=,TRUE.

EXECUTE: (PRINTABLE)

BS=,FALSE,

EXECUTE: (PRINTABLE)

STOP

STARTPROC : (PRINTABLE)
WRITE (STDOUT: ,1) BS
1 FORMAT(”1 TEST OF INTERP BINARY SEARCH>’,L2)
FOR(I=1; I<=10; I=I+1)
$(
XX=T*T
XX=XX+0.5
UU=-XX
YCAL=XX**4=XX**3
WCAL=-YCAL
CALL INTERP (XX,YOUT,X,Y,N,NS,BS,M)
WRITE (STDOUT: ,2) I,NS,XX,YOUT,YCAL
2 FORMAT (1X,2(2X,I3),3(2X,E20.7))
CALL INTERP (UU,WOUT,U,W,N,NS,BS,M)
WRITE (STDOUT: ,2) I,NS,UU,WOUT ,WCAL
WRITE (STDOUT: , 3)
3 FORMAT (1X)
$)
ENDPROC : (PRINTABLE)
END

Page 60

@FOR,

23000

23001

23002

23004

22006

23010

23013

23014
1999

23011
23012

23008

RATMAC Primer

FORTRAN Code

1S INTERP/

SUBROUTINEINTERP (XIN,YOUT,XTAB,YTAB,MAXTAB,NSRCH, BSRCH , NORDER)
REALXTAB (MAXTAB) , YTAB (MAXTAB)

LOGICALBSRCH

LOGICALASC

IF (. NOT, (XTAB (1) .LT,XTAB (MAXTAB))) GOTO23000
ASC=,TRUE,

GOT023001

CONTINUE

ASC=,FALSE.

CONTINUE

NHALF=NORDER/ 2

NUP=MAXTAB-NHALF

IF (. NOT, (MAXTAB,LE.NORDER)) GOTO23002

MP=1

MU=MAXTAB

GOT023003

CONTINUE

IF (,NOT, ((ASC.AND,XIN,LE,XTAB (NHALF) ,OR, ,NOT ,ASC,AND ,XIN,GE ,XT
*HALF))))GOT023004

MP=1

MU=NORDER

GOTO023005

CONTINUE

IF (.NOT, (.NOT. (ASC.AND,XIN.LE,.XTAB (NUP) .OR. ,NOT ,ASC.AND.XIN,.GE
*B (NUP)))) GOTO23006

MP=MAXTAB+1-NORDER

MU=MAXTAB

GOT023007

CONTINUE

IF (.NOT, (BSRCH)) GOT023008

MP=1

MU=MAXTAB

CONTINUE

K= (MP+MU) /2

IF (,NOT, ((ASC.AND,XIN,LE,.XTAB (K) ,OR, ,NOT,ASC.AND,XIN,GE,XTAB (K
*GOTO23013

MU=K~1

GOT023014

CONTINUE

MP=K+1

CONTINUE

FORMAT (1X, “BINARY”,2E12.6,14)

WRITE (6,1999) XIN,XTAB (K} ,K

IF (JNOT. (MP.GT.MU)) GOTO23010

CONTINUE

MP=MU~NHALF+1

MU=MP+NORDER=1

GOT023009

CONTINUE .

IF (.NOT, (NSRCH,LT.1,0R,NSRCH,GT,MAXTAR)) GOTO23015
NSRCH= (1+MAXTAB/ 2)

Page 61

Example I

23015 CONTINUE

23017 IF(.NOT, (.,NOT, (ASC.AND,XIN.LE,XTAB(NSRCH) .OR, .NOT .,ASC,AND.XIN.
*TAB (NSRCH)))) GOT023018
NSRCH=NSRCH+1
GOT023017

23018 CONTINUE

23019 IF(.NOT. ((ASC.AND.XIN.LE,XTAB (NSRCH-1) .0OR, ,NOT.ASC.AND.XIN,GE,
* (NSRCH-1))))GOT023020
NSRCH=NSRCH-1
GOT023019

23020 CONTINUE
MP=NSRCH-NHALF
MU=MP+NORDER-1

1998 FORMAT(1X, “SEQUENTIAL”,2E12.6,14)
WRITE (6,1998) XIN,XTAB (NSRCH) ,NSRCH

23009 CONTINUE

23007 CONTINUE

23005 CONTINUE

23003 CONTINUE
NSRCH=MP+NHALF-1
YOUT=GRANGE (XIN,MP,MU,XTAB,YTAB)
RETURN
END

@FOR,IS GRANGE/
FUNCTIONGRANGE (XIN,MIN,MAX ,XTAB,YTAB)
REALXTAB (1) ,YTAB (1)
GRANGE=0, 0
I=MIN
23021 IF(.NOT. (I.LE.MAX))GOT023023
PROD=YTAB (I)
STO=XTAB (I)
J=MIN
23024 IF(.NOT,. (J.LE.MAX))GOT023026
IF (.NOT. (I.NE,J))GOT023027
PROD=PROD* (XIN-XTAB (J))/ (STO-XTAB (J))
23077 CONTINUE
23025 J=J+1
GOT023024
23026 CONTINUE
GRANGE=GRANGE+PROD
23022 I=I+1
GOT023021
23023 CONTINUE
RETURN
END

Page 62

RATMAC Primer

@FOR, IS MAIN/
LOGICALBS
DIMENSTONX (201) ,Y(201) ,U(201) ,W(201)
N=201
N&=(
I=-100

23029 IF(.NOT, (I.LE.100))GOT023031
X(I+101)=I
U(I+101)=-1
Y(I+101) =I*%4=T%%3
W(I+101)=-Y (I+101)

23030 I=I+1
GOT023029

23031 CONTINUE
M=4
BS=.TRUE,
ASSIGN1996TOJ1997
GOT01997

1996 CONTINUE
BS=,FALSE,
ASSIGN1995T0J1997
GOTO1997

1995 CONTINUE
STOP

1997 CONTINUE
WRITE(6,1)BS

1 FORMAT (“1 TEST OF INTERP BINARY SEARCH>”,L2)
I=1

23032 IF(.NOT.(I.LE.10))GOT023034
XX=T*I
KX=XX+0.5
UU=-XX
YCAL=XX** 4-XX#*3
WCAL=-YCAL _
CALLINTERP (XX, YOUT,X,Y,N,NS,BS,M)
WRITE(6,2)I,NS,XX,YOUT, YCAL

2 FORMAT (1X,2(2X,I3),3(2%,E20.7))
CALLINTERP (UU,WOUT,U,W,N,NS,BS,M)
WRITE(6,2)I,NS,UU,WOUT,WCAL
WRITE (6, 3)

3 FORMAT (1X)

23033 I=I+1
GOT023032

23034 CONTINUE
GOTOJ1997
END

Page 63

79 obed

exQrT

TEST OF INTERP RINARY SEARCH> T

BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
1
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
1

BINARY
BINARY
BINARY
BINARY
BINARY
BRINARY
BINARY
BINARY
2
BINARY
BINARY
BINARY
BINARY

Results of the Calculation

. 150000+01
.150000+01
.150000+01
. 150000+01
.150000+0L
.150000+01
.150000+01
-150000+01
102
-.150000+01
-.150000+01
-.150000+01
-.150000+01
-.,150000+01
-.150000+01
-.150000+01
-.150000+01
102

-450000+01
.450000+01
. 450000+01
.450000+01
.450000+01
.450000+01
.450000+01
.450000+01
105
~-.450000+01
-.450000+01
-.450000+01
-.450000+01

.000000

.500000+02
. 250000402
.120000+02
.600000+01
.300000+01
.100000+01
. 200000+01

101
151
126
113
107
104
102
103

.1500000+01

-.000000
-.500000+02
-.,250000+02
-.120000+02
-.600000+01
-.300000+01
-.100000+01
-.200000+01

101
151
126
113
167
104
102
103

-.1500000+01

.000000

.500000+02
.250000+02
.120000+02
.600000+01
.300000+01
-400000+01
.500000+01

101
151
126
113
107
104
105
106

.4500000+01

.000000
-.500000+02
-.250000+02
-.120000+02

101
151
126
113

.1125000+01

-.1125000+01

.3183750+03

.1687500+01

-.1687500+01

3189375403

1 or1dwexy

G9 @bed

BINARY
BINARY
BINARY
BINARY
2

BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
3
BINARY
BINARY
BINARY
BINARY
BINARY

~-.450000+01
-.450000+01
-.450000+01
-.450000+01
168

.950000+01
.950000+01
.950000+01
.950000+01
.950000+01
.950000+01
.950000+01
110
-.950000+01
-.950000+01
~-.950000+01
-.950000+01
-.950000+01

~-.600000+01 107
-.300000+01 104
-.400000+01 105
-.500000+01 106
-.4500000+01

.000000 101
.500000+02 151
.250000+02 126
.120000+02 113
.600000+01 107
.900000+01 110
-100000+02 111
.9500000+01
.000000 101
-.500000+02 151
-.250000+02 126
-.120000+02 113
-.600000+01 107

BINARY -.950000+01 -.900000+01 110
BINARY -.950000+01 -.100000+02 111

3

BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
4
BINARY
BINARY
BINARY
BINARY
BINARY

110

.165000+02
.165000+02
.165000+02
.165000+02
.165000+02
.165000+02
.165000+02
.165000+02
117
~-.165000+02
-.1650004+02
-.,165000+02
-.165000+02
-.165000+02

=-.9500000+01

.000000 101
.500000+02 151
.250000+02 126
.120000+02 113
.180000+02 119
.150000+02 116
.160000+02 117
.170000+02 118
.1650000+02
.000000 101
-.500000+02 151
-.250000+02 126
-.120000+02 113
-.180000+02 119

-.3183750+03

. 7287125+04

-.7287125+04

.6962737+05

-.3189375+03

. 7287687+04

~.7287687+04

.6962794+05

ASWT A4 DVWLVYY

99 obed

BINARY

BINARY

BINARY
4

BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
5
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
5

BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
6
BINARY
BINARY
BINARY
BINARY
BINARY

-.165000+02
-.165000+02
-.165000+02
117

. 255000402
.255000+02
.255000+02
.255000+02
. 255000+02
. 255000402
.255000+02
126
-.255000+02
-.255000+02
-. 255000402
-.255000+02
-.255000+02
-,255000+02
-, 255000+02
126

.365000+02
.365000+02
.365000+02
.365000+02
.365000+02
. 365000+02
.365000+02
.365000+02
137
-, 365000+02
-.365000+02
-.365000+02
-.365000+02
-.365000+02

-.150000+02
-.160000+02
-.170000+02

‘116

117
118

-.1650000+02

.000000

.500000+02
.250000+02
.370000+02
.310000+02
.280000+02
.260000+02

101
151
126
138
132
129
127

.2550000+02

.000000
-.500000+02
-.250000+02
~-.370000+02
-.310000+02
-.280000+02
-.260000+02

101
151
126
138
132
129
127

-.2550000+02

.000000

.500000+02
.250000+02
.370000+02
.310000+02
.340000+02
.350000+02
.360000+02

101
151
126
138
132
135
136
137

.3650000+02

.000000
-.500000+02
-.250000+02
-.370000+02
-.310000+02

101
151
126
138
132

~-.6962737+05

.4062431+06

-.4062431+06

«1726262+07

-.6962794+05

.4062437+06

-.4062437+06

.1726263+07

T erdurexy

L9 abeg

BINARY -.365000+02 -.340000+02 135
BINARY -,365000+02 ~-.350000+02 136
BINARY ~-.365000+02 -.360000+02 137
-.3650000+402

6

BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
7
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
7

BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
8
BINARY

137

-495000+02
-.495000+02
-495000+02
-495000+02
.495000+02
-495000+02
.495000+02
.495000+02
150
-.495000+02
-.495000+02
-.,495000+02
-.495000+02
-.495000+02
-.495000+02
-.495000+02
~.495000+02
150

. 645000402
.645000+02
.645000+02
.645000+02
.645000+02
.645000+02
.645000+02
.645000+02
165
-.645000402

.000000

.500000+02
.250000+02
.370000+02
.430000+02
-460000+02
480000402
-490000+02

101
151
126

138

144
147
149
150

.4950000+02

.000000
~.500000+02
-.250000+02
-.370000+02
~-.430000+02
-.460000+02
-.480000+02
-.490000+02

101
151
126
138
144
147
149
150

-.4950000+02

.000000

.500000+02
.750000+02
.620000+02
.680000+02
.650000+02
.630000+02
.640000+02

101
151
176
163
169
166
164
165

.6450000+02

.000000

101

BINARY -.645000+02 -.500000402 151
BINARY ~,645000+02 ~,.7500004+02 176
BINARY -.645000+02 -.620000+02 163

-.1726262+07

.5882437+07

-.,5882437+07

.1703934+08

-.,1726263+07

-5882438+07

-.5882438+07

»1703934+08

Z2UWT Ad DVYWLYY

g9 obed

BINARY
BINARY
BINARY
BINARY
8

BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
9
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
9

i0
10

-.645000+02
-.645000+02
-, 645000+02
-.645000+02
165

.815000+02
.815000+02
.815000+02
.815000+02
.815000+02
.815000+02
.815000+02
182
~,815000+02
~-.815000+02
-.815000+02
-.815000+02
-.815000+02
-.815000+02
-.815000+02
182

199
199

~-.680000+02
-.650000+02
-.630000+02
-.640000+02

169
166
164
165

-.6450000+02

.000000

.500000+02
.750000+02
.880000+02
.810000+02
.840000+02
.820000+02

101
151
176
189
182
185
183

.81500004+02

.0006000
-.500000+02
-.750000+02
-.880000+02
-.810000+02
-.840000+02
-.820000+02

101
151
176
189
182
185
183

-.,8150000+02

.1005000+03
-.1005000+03

TEST OF INTERP BINARY SEARCH> F

SEQUENTIAL .150000+01 .200000+01
1 102 .1500000+01

SEQUENTIAL -.150000+01 -.200000+01
1 102 -.,1500000+01

SEQUENTIAL .450000+01 .500000+01
2 105 .4500000+01

SEQUENTIAL -.450000+01 -.500000+01
2 105 -.4500000+01

103

163

106

106

-.,1703834+08

-4357814+08

-.4357814+08

.1010000+09
-.1010000+09

.1125000+01

-,1125000+01

.3183750+03
-.3183750+03

-.1703934+08

.4357814+08

-.4357814+08

.1010000+09
-.,1010000+09

.1687500+01

~.1687500+01

.31856375+03

-.3189375+03

1 oT1duexyg

69 obeg

SEQUENTIAL

3 110
SEQUENTIAL -
3 110
SEQUENTIAL
4 117
SEQUENTIAL -~
4 117
SEQUENTIAL
5 126
SEQUENTIAL -
5 126
SEQUENTIAL
6 137
SEQUENTIAL -
6 137
SEQUENTIAL
7 150
SEQUENTIAL -
7 150
SEQUENTIAL
8 165
SEQUENTIAL -
g 165
SEQUENTIAL
9 182
SEQUENTIAL -
9 182
1¢ 199
16 199

NORMAL EXIT,

.950000+01 .100000+02
.9500000+01

.950000+01 -.100000+02
-.9500000+01

.165000+02 .170000+02
.1650000+02

.165000+02 ~.170000+02
-.1650000+02

. 255000402 .260000+02
.2550000+02

.255000+02 -.260000+02
-.2550000+02

.365000+02 .370000+02
.3650000+02

.365000+02 -.370000+02
~-.3650000+02

.495000+02 .500000+02
.4950000+02

.495000+02 ~.500000+02
-.4950000+02

.645000+02 .650000+02
.6450000+02

.645000+02 ~-.650000+02
-.6450000+02

.815000+02 .820000+02
.8150000+02

.815000+02 ~.820000+02
-.8150000+02

1005000403
-.1005000+4+03
EXECUTION TIME:

111

111

118

118

127

127

138

138

151

151

166

166

183

183

.7287125+04

~.7287125+04

.6962737+05

-.6962737+05

.4062431+06

~-.,4062431+06

.1726262+07

-.1726262+07

.5882437+07
-.5882437+07

.1703934+08

~.1703934+08

.4357814+08
-.4357814+08

.1010000+09
-.,1010000+09

330 MILLISECONDS.

. 7287687+04

-.7287687+04

.6962794+05

-.6962794+05

.4062437+06

-.,4062437+06

. 1726263+07

~.1726263+07

.5882438+07

-.5882438+07

.1703934+08

-.1703934+08

.4357814+08
~.4357814+08

.1010000+09
-.1010000+09

I2UWT Ad DOVRWIVY

Example II: A RATMAC Program
to Implement a Simple File Editor

The file editor is designed to copy an input file to an
output file. During the copy process, the file is modifiecd
by commands entered via a standard input unit, STDIN:. A
command has the general format:

*¥X ,<initial line>,<final line>

The asterisk must be the first character on the input line.
X is a single letter from the set I(insertion),
R(replacement), D(deletion), and E{end of commands).
<initial line> and <final line> are integer 1line numbers
used to identify the 1lines of the input file to be
modified. A typical modification stream might be:

*1,17 insert after line 17
this text

and this text

and this text

* this line terminates the insert text
*R,54,57 replaces lines 54 through 57

with this text

% %k

*D,59 delete a single line

*D,65,102 delete a group of lines

Using procedures and top down design, the program has four
"levels"”. The top level is the procedure MAIN which in nine
lines defines the control flow of the editing process, It
pushes down to a lower level decisions on how instructions
are read and decoded, or how the files are read or written.
The second level contains the procedures
INTERPRET INSTRUCTION, READ INSTRUCTION, and COPY REST,
which also put off to a lower level decisions on how files
are read and written, The third level contains some utility
procedures, while the fourth level, CTOI, END OF FILE,
WRITE LINE, READ LINE, PUT LINE, and GET LINE contain the
"primitives” that interface with the 1I/0 system of the
computer,

Bach procedure is short and has a single function which
is easy to understand.

Page 70

RATMAC Primer

RATMAC Code for the Line Editor

A SIMPLE LINE ORIENTED EDITOR

#

#

#

COMMANDS

#

4 *T ,M INSERT FOLLOWING TEXT AFTER MTH LINE
*D,M,N DELETE LINES M TO N

*R,M,N REPLACE LINES M TO N BY PFOLLOWING TEXT
% TERMINATE INSERTION OR REPLACEMENT TEXT
4 *5 END EDITING PROCESS

#

*T,2

INSERTED LINE

* &

*R,7,10

" NEW REPLACEMENT LINE

% &

*D, 20,30

*B

#

M

ACRO: (CTRLSTMT: ,$P@ [FOR,IS]$SBS1/$2)

CTRLSTMT : (EDITOR,FOR)

MACRO: (STDIN:,5) # STANDARD INPUT
MACRO: (STDOUT: ,6) # STANDARD OUTPUT
#

IF AN ARGUMENT IS PRESENT

4 GENERATE, ARGUMENT

#

MACRO: (CARG:, [IFELSE: ($1,,,$,51)1)
#

IF AN ARGUMENT IS PRESENT

GENERATE ARGUMENT

#

MACRO: (ARG: , [IFELSE: ($1,,,51) 1)

THE MACRO DEBUG: IS A GENERAL PURPOSE DEBUGGING MACRO

ARGUMENT 1 IS AN IDENTIFICATION MESSAGE
ARGUMENT 2 IS A FORMAT

ARGUMENTS 3 THRU 9 ARE VARIABLES TO BE DUMPED

e s e e e s sl e

MACRO: (DEBUG: , [MAKENUM: (1) FORMAT (1X,"$1",$2)

WRITE (STDOUT: ,SEED:)ARG: ($3) CARG: ($4)CARG: ($5)CARG: ($6) $4
CARG: ($7)CARG: ($8)CARG: ($9) 1)

#

PROCEDURE EXECUTION MACRO

#

MACRO: (EXECUTE: , [IFDEF: ($1,, [[MACRO: ([$1:],MAKENUM: (1)) 11) $4
ASSIGN MAKENUM: (1) TO J $1:; GOTO $1:; SEED: CONTINUE])

Page 71

Example II

$

DEFINE START OF

PROCEDURE

#

MACRO: (STARTPROC: ,$1: CONTINUE)
#

$ DEFINE THE END OF A

PROCEDURE

#

MACRO: (ENDPROC: ,GOTO J $1: [XMACRO:([S$1:1)1)
#

EXAMINES IF

A MACRO IS

DEFINED

#

MACRO: (IFDEF:, [IFELSE: ([$1:2],%1:,83,82) 1)

#

#

#

MACRO: (SEED: ,2000)

MACRO: (MAKENUM: , [MACRO: ([SEED:] ,ARITH: (SEED: ,~,$1))SEED:])
MACRO: (MESSAGE: , [WRITE (S1,MAKENUM: (1))

SEED: FORMAT (1X,"$2™)1)

MACRO: (CHARACTER: , INTEGER) # MAP CHARACTER ONTO INTEGER
MACRO: (GETVALCHAR: ,FLD (0,6,%1)) # UNIVAC SPECIFIC
MACRO: (HUGE: ,100000) # A HUGE NUMBER OF LINES TO END FILE
MACRO: (IN:,9) # EDITOR INPUT FILE

MACRO: (OUT:,10) # EDITOR OUTPUT FILE

MACRO: (MAXCARD: ,80) # CHARACTERS ON A CARD

#

CHARACTER: INSTR (MAXCARD:), NCL (MAXCARD:)

#

LOGICAL EOFSTI

LOGICAL NOEND

LOGICAL EOFIN

DATA LNO/0/ # INITIAL LINE NUMBER

DATA EOFSTI,NOEND,EOFIN/.FALSE.,.TRUE., .FALSE./

#

PROGRAM DRIVER

#

EXECUTE: (MAIN)

#

- MAIN EDITOR PROCEDURE -
#

STARTPROC: (MAIN)

EXECUTE: (GET_LINE)
EXECUTE: (READ INSTRUCTION)
REPEAT

$ (
EXECUTE: (INTERPRET INSTRUCTION)
EXECUTE: (WRITE_ LINE)
EXECUTE: (READ_INSTRUCTION)
$)
STOP
ENDPROC: (MAIN)

Page 72

RATMAC Primer

#
#
- PROCEDURE TO EXECUTE AN INSTRUCTION -
¥
STARTPROC: (INTERPRET INSTRUCTION)
EXECUTE: (COPY) # GET TO FIRST LINE
IF (KEY=="1")
${(
EXECUTE: (PUT_LINE)
EXECUTE: (INSERT)
$)
ELSE IF (KEY=="R%)
$(
EXECUTE: (INSERT)
EXECUTE: (SKIP)
$)
ELSE IF (KEY=="D")
S
EXECUTE: (SKIP)
$)
ELSE IF (KEY=="E")
S
EXECUTE: (COPY REST)
$)
ELSE
S
MESSAGE: (STDOUT: ,ERROR IN INSTRUCTION)
EXECUTE: (COPY REST)
$)
ENDPROC: (INTERPRET INSTRUCTION)
#
#
4 - PROCEDURE TO READ AN INSTRUCTION AND DECODE IT -
#
STARTPROC: (READ INSTRUCTION)
#
READS A LINE FROM STARDARD INPUT AND INTERPRETS INSTRUCTION
#
READ (STDIN:,1,END=2) (INSTR(I),I=1,80)
1 FORMAT (80A1)
GO TO 3
2 INSTR(1)="%"
INSTR(2)="E"
INSTR(3)=" ~
3 CONTINUE
KEY=INSTR(2)
IPT=3
IFP(INSTR(IPT)==",")
S{(
IPT=IPT+1
EXECUTE: (CTOT)
M=NUMBER
$)
ELSH
M=L,NO
IF (INSTR(IPT)==",")

Page 73

Example II

$ (
IPT=IPT+1
EXECUTE: (CTOI)
N=NUMBER
$)
ELSE
N=M
DEBUG: (INSTRUCTION, 1 (Al,3I4),INSTR(2),LNO,M,N)
ENDPROC: (READ INSTRUCTION)
#
#
- PROCEDURE TO INSERT A BLOCK OF TEXT IN FILE FROM STDIN:
¥
STARTPROC : (INSERT)
#
READS LINES FROM STDIN: AND PUTS THEM IN A FILE
#
TERMINATES WHEN “NOEND’ BECOMES FALSE
#
DEBUG: (START INSERT ,3(2%,I4),LNO,M,N)
NOEND=, TRUE.
EXECUTE: (READ_LINE)
WHILE (NOEND)
$(
EXECUTE: (PUT_LINE)
EXECUTE: (READ LINE)
$)
EXECUTE: (GET_ LINE)
DEBUG: (END INSERT ,3(2%,I4),LNO,M,N)
ENDPROC: (INSERT)
#
#
- PROCEDURE TO COPY REMAINDER OF FILE TO OUTPUT FILE -
#
STARTPROC: (COPY REST)
#
4 COPIES REST OF INPUT FILE TO OUTPUT FILE
#
DEBUG: (COPY REST ,3(2X,I4),LNO,M,N)
M=HUGE: # SET LAST LINE TO A HUGE NUMBER
EXECUTE: (COPY)
EXECUTE: (END OF FILE)
DEBUG: (END COPY REST ,3(2KX,I4),LNO,M,N)
STOP
ENDPROC: (COPY REST)
#
#
- PROCEDURE TO COPY A BLOCK OF LINES FROM FILE TO OUTPUT F
#
STARTPROC : (COPY)
#
COPIES FROM INPUT FILE TO OUTPUT FILE
#
DEBUG: (START COPY,3I4,LNO,M,N)
WHILE (LNO<M)
$(

Page 74

RATMAC Primery

EXECUTE: (PUT_LINE)
EXECUTE: (GET LINE)
$)

DEBUG: (END COPY,3I4,LNO,M,N)

ENDPROC: (COPY)

#

.

- PROCEDURE TO SKIP A BLOCK OF LINES ON THE INPUT FILE -

#

STARTPROC: (SKIP)

#

SKIPS LINES ON INPUT FILE

#

DEBUG: (START SKIP,3I4,LNO,M,N)

WHILE (LNO<=N)
$(

EXECUTE: (GET LINE)
$)

DEBUG: (END SKIP,3I4,LNO,M,N)

ENDPROC: (SKIP)

#

#

- PROCEDURE TO TRANSLATE A CHARACTER STRING TO AN INTEGER

#

STARTPROC: (CTOI)

WHILE (INSTR(IPT)==")

IPT=IPT+1

NUMBER=0

DEBUG: (CTOI START,1(Al,I4),INSTR(IPT),IPT)

REPEAT $(

K=FLD(0,6,INSTR(IPT))-FLD(0,6,70")
IF(K<0 \ K>9)
BREAK
IPT=IPT+1
NUMBER=10*NUMBER+K
$)

DEBUG: (END CTOI,2I4,NUMBER,IPT)

ENDPROC: (CTOI)

#

#

- PROCEDURE TO READ A REPLACEMENT LINE FROM STDIN: -

#

STARTPROC: (READ LINE)

#

READS A LINE FROM STDIN

$

IF (IEOFSTI)

8 (
READ (STDIN: ,1,END=12) (NCL(I),I=1,80)
GO TO 13
12 EOFSTI=,TRUE,
13 CONTINUE
$)
IF(NCL(1)=="%" g NCL(2)=="%")
NOEND= ,FALSE.
DEBUG: (READ LINE ,80A1, (NCL(I),I=1,80))

Page 75

Example 17T

ENDPROC: (READ LINE)
#
#
- PROCEDURE TO WRITE THE CURRENT FILE LINE TO STDOUT: -
#
STARTPROC: (WRITE LINE)
DEBUG: (WRITE LINE ,3(2X,I4),LNO,M,N)
WRITE (STDOUT: ,14) LNO, (NCL(I),I=1,80)
14 FORMAT(® CURRENT LINE “,I8,1X,80A1)
ENDPROC: (WRITE_LINE)
#
#
- PROCEDURE TO WRITE AN EOF ON THE OUTPUT FILE -
#
STARTPROC: (END OF FILE)
ENDFILE OUT:
REWIND OUT:
DEBUG: (END OF FILE,I4,LNO)
ENDPROC: (END_OF FILE)
#
.
4 - PROCEDURE TO GET A LINE FROM THE INPUT FILE =~
4
STARTPROC: (GET_ LINE)
#
GETS A LINE FROM FILE IN: - STORED IN NCIL
#
LNO=LNO+1
IF (!EOFIN)
$(
READ (IN:,1,END=10) (NCL(I),I=1,80)
GO TO 11
10 EOFIN=,TRUE.
LNO=HUGE:+1
11 CONTINUE
$)
DEBUG: (FILE IN ,L2%,I4$,80A1,EOFIN,LNO, (NCL(I),I=1,80))
ENDPROC: (GET_ LINE)
#
#
- PROCEDURE TO PUT A LINE INTO THE OUTPUT FILE -
#
STARTPROC: (PUT LINE)
#
PUTS NCL INTO FILE OUT:
#
DEBUG: (FILE OUT ,80A1, (NCL(I),I=1,80))
WRITE (OUT: , 1) (NCL(I),I=1,80)
ENDPROC: (PUT_LINE)
END

Page 76

FORTRAN Code

@FOR,IS EDITOR/FOR

1998
1999

1996

1994
23000

1992

1990

1989
23001
23002

DIAGNOSTIC

DIAGNOSTIC

1993

1987

1985

1983

23003

1982

1980

INTEGERINSTR (80) ,NCL({80)
LOGICALEOFSTI
LOGICALNOEND
LOGICALEOFIN

DATALNO/0/

RATMAC Primer

DATAEOFSTI ,NOEND,EOFIN/ . FALSE., .TRUE. , .FALSE./

ASSIGN1998T0J1999
GOT019929

CONTINUE

CONTINUE
ASSIGN1996T0J1997
GOTO1997

CONTINUE
ASSIGN1994T0OJ1995
GOTO1995

CONTINUE

CONTINUE
ASSIGN1992T0J1993
GOTO1993

CONTINUE
ASSIGN1990TOJ1991
GOTO1991

CONTINUE
ASSIGN1989T0J1995
GOT01995

CONTINUE
GOT023000
CONTINUE

STOP

GOT0J1999
CONTINUE
ASSIGN1987T0J1988
GOT01988

CONTINUE
IF(.NOT.(KEY.EQ. I7))G0T023003
ASSIGN1985T70J1986
GOT01986

CONTINUE
ASSIGN1983T0J1984
GOT01984

CONTINUE
GOT023004
CONTINUE

IF(.NOT. (KEY.EQ. R”))GOT023005
ASSIGN1982T70J1984
GOT01984

CONTINUE
ASSIGN1980TOJ1981
G0T01981

CONTINUE

Page 77

CONTROL CAN NEVER REACH THE NEXT STATEMENT

CONTROL CAN NEVER REACH THE NEXT STATEMENT

Example TI

23005

1979

23007

1977
23009
1976
1975
23010
23008
23006
23004
1995
1

2

1973

23011

23012

1972

23013

23014
1971

GOT023006

CONTINUE

IF(.NOT, (KEY.EQ. D”))GOT023007
ASSIGN1979TOJ1981

GOT01981

CONTINUE

GOT023008

CONTINUE

IF (.NOT, (KEY,EQ. E”))GOT023009
ASSIGN1977TOJ1978

GOT01978

CONTINUE

GOT023010

CONTINUE

WRITE(6,1976)

FORMAT (1X, “ERROR IN INSTRUCTION”)

ASSIGN1975T0J1978
GOT01978

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE
GOTOJ1993
CONTINUE

READ (5,1,END=2) {INSTR(I),I=1,80)

FORMAT (80A1)
GOTO3
INSTR(1)="%*"
INSTR(2)="E"
INSTR(3)=" ~
CONTINUE

- KEY=INSTR (2)

IPT=3

IF(.NOT, (INSTR(IPT).EQ.”,”))GOTO23011

IPT=IPT+1
ASSIGN1973T0J1974
GOTO1974

CONTINUE
M=NUMBER
G0TO23012
CONTINUE

M=LNO

CONTINUE

IF (., NOT, (INSTR(IPT).EQ.”,”))GOT023013

IPT=IPT+1
ASSIGN1972T0J1974
GOTO1974

CONTINUE
N=NUMBER
GOT023014
CONTINUE

N=M

CONTINUE

FORMAT (1X, “INSTRUCTION” ,1(A1l,314))

WRITE(6,1971) INSTR(2) ,LNO,M,N

Page 78

1984
1970

1968

23015

1967

1966

23016

1965
1964

1978

1963

1962

1960
1959

DIAGNOSTIC

1988
1958

23017

1957

1956

23018

1955

1981
1954

GOTO0J1995

CONTINUE

FORMAT (1X,” START INSERT ~,3(2X,I4))
WRITE (6,1970)LNO,M,N

NOEND=, TRUE,

ASSIGN1968T0J1969

GOT01969

CONTINUE

IF(.NOT. (NOEND))GOTO23016
ASSIGN1967T0J1986

GOT01986

CONTINUE

ASSIGN1966T0OJ1969

GOT01969

CONTINUE

GOT023015

CONTINUE

ASSIGN1965T0J1997

GOT01997

CONTINUE

FORMAT (1X,” END INSERT ~,3(2X,I4))
WRITE (6,1964) LNO,M,N

GOTOJ1984

CONTINUE

FORMAT (1X,” COPY REST ~,3(2X,I4))
WRITE (6,1963) LNO,M,N

M=100000

ASSIGN1962T0J1988

G0T01988

CONTINUE

ASSIGN1960T0J1961

GOT01961

CONTINUE

FORMAT (1X,” END COPY REST “,3(2X,I4))
WRITE (6,1959)LNO,M,N

STOP

GOT0J1978

CONTINUE

FORMAT (1X, “START COPY”,3I4)
WRITE (6,1958) LNO,M,N

IF (. NOT. (LNO.LT.M))GOTO23018
ASSIGN1957T0J1986

GOTO1986

CONTINUE

ASSIGN1956T0J1997

GOT01997

CONTINUE

GOT023017

CONTINUE

FORMAT (1X, “END COPY”,314)
WRITE(6,1955) LNO,M,N
GOT0J1988

CONTINUE

FORMAT (1X, “START SKIP”,b3I4)
WRITE (6,1954) LNO,M,N

Page 79

RATMAC Primer

CONTROL CAN NEVER REACH THE NEXT STATEMENT

Example II

23019 1¥(.NOT, (LNO,.LE,.N))GOTO23020
ASSIGN1953T0J1997
GOT01997

1953 CONTINUE
GOT023019

23020 CONTINUE

1952 FORMAT(1X, END SKIP”,314)
WRITE(6,1952) LNO,M,N
GOT0J1981

1974 CONTINUE

23021 IF(.NOT. (INSTR(IPT).EQ.” “))GOTO23022
IPT=IPT+1
GOT023021

23022 CONTINUE
NUMBER=(

1951 FORMAT (1X, CTOI START”,1(Al,I4))
WRITE(6,1951) INSTR (IPT) ,IPT

23023 CONTINUE
K=FLD(0,6,INSTR(IPT))-FLD(0,6,70")
IF(.NOT, (K. LT.0.0R,K.GT.9))G0OT023026
GOT023025

23026 CONTINUE
IPT=IPT+1
NUMBER=10*NUMBER+K

23024 GOTO023023

23025 CONTINUE

1950 FORMAT(1X, END CTOI”,2I4)
WRITE(6,1950) NUMBER, IPT
GOT0J1974

1969 CONTINUE
IF (. NOT, (. NOT.EOFSTI))GOT023028
READ (5,1,END=12) (NCL(I),I=1,80)
GOTO13

12 EOFSTI=,TRUE,

13 CONTINUE

23028 CONTINUE
IF (NOT,. (NCL (1) .EQ. *” ,AND.NCL (2) .EQ. *°))G0OT023030
NOEND=,FALSE.

23030 CONTINUE

1949 FORMAT (1X,” READ LINE “,80Al)
WRITE (6,1949) (NCL(I),I=1,80)
GOTOJ1969

1991 CONTINUE

1948 FORMAT (1X,” WRITE LINE “,3(2X,I14))
WRITE (6,1948) LNO,M,N
WRITE (6,14)LNO, (NCL(I),I=1,80)

14 FORMAT (© CURRENT LINE “,I8,1X,80Al)
GOT0J1991

1961 CONTINUE
ENDFILELO
REWIND10

1947 FORMAT (1X, END OF FILE”,I4)
WRITE(6,1947)LNO
GOT0J1961

1997 CONTINUE
LNO=LNO+1

Page 80

RATMAC Primer

IF (.NOT, (. .NOT.EOFIN))GOT023032
READ(9,1,END=10) (NCL(I),I=1,80)
GOTO11

10 EOFIN=,TRUE,
LNO=100000+1

11 CONTINUE

23032 CONTINUE

1946 FORMAT(1X,” FILE IN “,L2,I4,80A1)
WRITE (6,1946) EOFIN,LNO, (NCL(I) ,I=1,80)
GOT0J1997

1986 CONTINUE

1945 FORMAT (1X,” FILE OUT ~,80Al1)
WRITE(6,1945) (NCL(I) ,I=1,80)
WRITE (10,1) (NCL(I),I=1,80)
GOT0J1986
END
END OF COMPILATION: 3 DIAGNOSTICS.

Input Text

THE FOLLOWING TEXT WILL ILLUSTRATE THE COMMANDS
OF THE LINE EDITOR, THE END OF THIS LINE SHOULD
HAVE 2 NUMBERED LINES INSERTED AFTER IT.

LINES A AND B SHOULD BE DELETED,

A

B

C

D

LINES X AND Y SHOULD BE REPLACED BY R1 AND R2Z.
X

¥

Z

Bdit Text

*1,3

1 FIRST INSERTED LINE
2 SECOND INSERTED LINE
%* &

*D,5,6

*R, 10,11

R1

R2

* &

*E

Page 81

Example II

Bdited Text

THE POLLOWING TEXT WILL ILLUSTRATE THE COMMANDS
OF THE LINE EDITOR. THE END OF THIS LINE SHOULD
HAVE 2 NUMBERED LINES INSERTED AFTER IT.

1 FIRST INSERTED LINE

2 SECOND INSERTED LINE

LINES A AND B SHOULD BE DELETED.

C

D

LINES X AND Y SHOULD BE REPLACED BY R1 AND R2.
Rl

R2

Z

Page 82

RATMAC Primer

RATMAC Error Messages

The general format of an error message iS:

#kx%k% BRROR AT LINE XXX
<ERROR MESSAGE>

<ADDITIONAL DIAGNOSTIC INFORMATION>

A trace-back through INCLUDE”"d

files 1is also given if
appropriate, XXX is a RATMAC line number. :

The following table lists the error messages:

MESSAGE

missing left parenthesis

missing parenthesis in CONDITION
illegal break

illegal next

missing quote

unexpected brace of EOF
unbalanced parentheses
invalid FOR clause

for stack oflo,

check reinit clause
INCLUDE”s nested to deeply

cannot open INCLUDE

token too long
name too long

definition too long

EXPLANATION

self-explanatory

1

i

a quote string must
be complete on a
single input line

self-explanatory

7"

9

probably a missing
closing right
parenthesis
self-explanatory

check file
availability

self-explanatory
macro name too long

macro definition
too long

Page 83

FATAL
no
no
no
no

no

no
no
no

ves

no

no

no
yes

yes

RATMAC Error Messages

too many definitions

warning: possible label confilict

illegal ELSE

stack overflow in parser

illegal right brace

unexpected ECF

-

undefined macro

call stack overflow

arg stack overflow

evaluation stack overflow

illegal macro name

XMACRO not found

illegal flag

DEFINE missing left parenthesis

DEFINE non-alphanumeric name
DEFINE missing comma

DEFINE missing right parenthesis

Page 84

too many macro
definitions

user label >=23000
ELSE but no IF

too complicated a
control structure
in RATFOR

left brace missing?
Ratmac unfinished
when an end-of-file
was found

self-explanatory

too many nested
macro calls

too many and/or too

long macro arguments

not enough space to
evaluate a macro

missing terminating
colon

tried to delete an
undefined macro

FLAGON: or FLAGOFF:
argument must be an
upper case letter

self-explanatory

11
%

L

no

no
no

yes

no

no

no

yves

ves

yes

no

no

no

no

no

no

yes

INDEX

Arguments, Macro, 35
ARITH:, 37
Blocks, Statement, 6
BREAK, 14
Character

Set, 20

String Manipulation, 38
Characters, Reserved, 26
CHRs, 40
Code, RATMAC Generated FORTRAN, 22
Comments, Cross-referencing, 22
Constants, Symbolic, 31
Constructs, Looping, 7
Control, Preprocessor, 40
Cross—referencing

Comments, 22

Line Number, 22
Decision Control Structures, 16
Digraphs, 27
DO

Loop, 7

Statement, 23
Example

File Editor, 70

Interpolation in a Table, 57
Explicit Statement Block, 6
Features, Miscellaneous, 20
File Editor Program, 70
File Inclusion, 30
FLAGOFY:, 40
FLAGON:, 40
FOR

Loop, 9

Statement, 23
Format, Program, 20
FORTRAN Code

RATMAC Constructs, 22

RATMAC Generated, 22
IF Statement, 25
IF,..BELSE Statement, 25
IFELSE:, 39
Implied Statement Block, 6
INCLUDE, Alternative, 42
Inclusion, File, 30
INCR:, 37

Interpolation in a Table Program, 57

LENSTR:, 38
Line Number Cross-referencing, 22
Loop

Do, 7

FOR, 9

Modifying, 14

REPEAT, 13

Page 85

RATMAC Primer

Index cont.

WHILE, 12
Looping Constructs, 7
Macro

Ayguments, 35

definition of, 4
MACRO:, 36
Macros, 34

ARITH:, 37

Built-in, 36

CHR:, 40

Examples, 47

FLAGOFF:, 40

FLAGON:, 40

IFELSE:, 39

INCR:, 37

LENSTR:, 38

MACRO:, 36

Non-recursive, 43

ORD:, 40

Recursgive, 45

SAVE:, 36

SUBSTR:, 38

Within Macros, 43

XMACRO:, 36
NEXT, 15
NEXT and BREAK Statements, 24
Non-recursive Macros, 43
ORD:, 40
Preprocessor Control, 40
Program

Example I - Interpolation, 57

Example II - File Editor, 70

Format, 20

Running, 21
Quoted Strings in RATMAC, 28
RATMAC

Quoted. Strings, 28
Recursive Macros, 45
REPEAT

Loop, 13

Statement, 24
REPEAT...UNTIL Statement, 24
Reserved Characters, 26
SAVE:, 36
Set, Character, 20
Statement

Blocks, 6

BREAK, 24

DO, 23

FOR, 23

IF, 25

IF...ELSE, 25

NEXT, 24

REPEAT, 24

REPEAT. . .,UNTIL, 24

WHILE, 23

Page 86

Index cont.

Strings, Quoted, 28
Structures

Decision Control, 16

Modifying Loop, 14
SUBSTR:, 38
Symbolic Constants, 31
Undexrline Character, 34
WHILE

Loop, 12

Statement, 23
ZMACRO:, 36

Page 87

RATMAC Primer

